نتایج جستجو برای: vertex pi index
تعداد نتایج: 474882 فیلتر نتایج به سال:
let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...
for a graph $g$ with edge set $e(g)$, the multiplicative sum zagreb index of $g$ is defined as$pi^*(g)=pi_{uvin e(g)}[d_g(u)+d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$.in this paper, we first introduce some graph transformations that decreasethis index. in application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum zagreb ...
For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...
In this paper, at first we mention to some results related to PI and vertex Co-PI indices and then we introduce the edge versions of Co-PI indices. Then, we obtain some properties about these new indices.
The vertex PI index PI(G) = ∑ xy∈E(G)[nxy(x) + nxy(y)] is a distance-based molecular structure descriptor, where nxy(x) denotes the number of vertices which are closer to the vertex x than to the vertex y and which has been the considerable research in computational chemistry dating back to Harold Wiener in 1947. A connected graph is a cactus if any two of its cycles have at most one common ver...
The Wiener index of a connected graph G, denoted by W (G), is defined as 12 ∑ u,v∈V (G) dG(u, v). Similarly, the hyper-Wiener index of a connected graph G, denoted by WW (G), is defined as 1 2W (G) + 1 4 ∑ u,v∈V (G) dG(u, v). The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, ...
The Padmakar–Ivan (PI) index of a graph G is defined as the sum of terms [mu(e) + mv(e)] over all edges of G, where e is an edge, connecting the vertices u and v, wheremu(e) is the number of edges of G lying closer to the vertex u than to the vertex v, and where mv(e) is defined analogously. The extremal values of the PI index are determined in the class of connected bipartite graphs with a giv...
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as v u v e uv PI (G) n (e) n (e). = = + ∑ Then Omega polynomial Ω(G,x) for counting qoc strips in G is defined as Ω(G,x) = ∑cm(G,c)x with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is construc...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید