نتایج جستجو برای: unfolding sequence

تعداد نتایج: 416116  

Journal: :Structure 2004
David Craig Mu Gao Klaus Schulten Viola Vogel

Cells can switch the functional states of extracellular matrix proteins by stretching them while exerting mechanical force. Using steered molecular dynamics, we investigated how the mechanical stability of FnIII modules from the cell adhesion protein fibronectin is affected by natural variations in their amino acid sequences. Despite remarkably similar tertiary structures, FnIII modules share l...

Journal: :Cell 2005
Jörg Hinnerwisch Wayne A. Fenton Krystyna J. Furtak George W. Farr Arthur L. Horwich

The cylindrical Hsp100 chaperone ClpA mediates ATP-dependent unfolding of substrate proteins bearing "tag" sequences, such as the 11-residue ssrA sequence appended to proteins translationally stalled at ribosomes. Unfolding is coupled to translocation through a central channel into the associating protease, ClpP. To explore the topology and mechanism of ClpA action, we carried out chemical cros...

Journal: :Biochemistry 2006
Mingfeng Yang Boyan Yordanov Yaakov Levy Rafael Brüschweiler Shuanghong Huo

Human transthyretin (TTR) is an amyloidogenic protein whose aggregation is associated with several types of amyloid diseases. The following mechanism of TTR amyloid formation has been proposed. TTR tetramer at first dissociates into native monomers, which is the rate-limiting step in fibril formation. The monomeric species then partially unfold to form amyloidogenic intermediates that subsequen...

Journal: :Journal of molecular biology 2005
Lewyn Li Hector Han-Li Huang Carmen L Badilla Julio M Fernandez

Domain 10 of type III fibronectin (10FNIII) is known to play a pivotal role in the mechanical interactions between cell surface integrins and the extracellular matrix. Recent molecular dynamics simulations have predicted that 10FNIII, when exposed to a stretching force, unfolds along two pathways, each with a distinct, mechanically stable intermediate. Here, we use single-molecule force spectro...

Journal: :Physical chemistry chemical physics : PCCP 2016
Asmita Gupta Manju Bansal

Mechanical unfolding studies on Ribonucleic Acid (RNA) structures are a subject of tremendous interest as they shed light on the principles of higher order assembly of these structures. Pseudoknotting is one of the most elementary ways in which this higher order assembly is achieved as discrete secondary structural units in RNA are brought in close proximity to form a tertiary structure. Using ...

2012
Devesh Kishore Suman Kundu Arvind M. Kayastha

BACKGROUND In this case study, we analysed the properties of unfolded states and pathways leading to complete denaturation of a multimeric chick pea β-galactosidase (CpGAL), as obtained from treatment with guanidium hydrochloride, urea, elevated temperature and extreme pH. METHODOLOGY/PRINCIPAL FINDINGS CpGAL, a heterodimeric protein with native molecular mass of 85 kDa, belongs to α+β class ...

Journal: :Biophysical journal 2001
A Bakk J S Høye A Hansen

We construct a Hamiltonian for a single domain protein where the contact enthalpy and the chain entropy decrease linearly with the number of native contacts. The hydration effect upon protein unfolding is included by modeling water as ideal dipoles that are ordered around the unfolded surfaces, where the influence of these surfaces, covered with an "ice-like" shell of water, is represented by a...

Journal: :Journal of structural biology 2002
Kaori Watanabe Claudia Muhle-Goll Miklós S Z Kellermayer Siegfried Labeit Henk Granzier

Titin is a giant elastic protein responsible for passive force generated by the stretched striated-muscle sarcomere. Passive force develops in titin's extensible region which consists of the PEVK segment in series with tandemly arranged immunoglobulin (Ig)-like domains. Here we studied the mechanics of tandem Ig segments from the differentially spliced (I65-70) and constitutive (I91-98) regions...

Journal: :FEBS letters 1999
C Ganesh N Eswar S Srivastava C Ramakrishnan R Varadarajan

Globular protein thermostability is characterized the cold denaturation, maximal stability (Tms) and heat denaturation temperatures. For mesophilic globular proteins, Tms typically ranges from -25 degrees C to +35 degrees C. We show that the indirect estimate of Tms from calorimetry and the direct estimate from chemical denaturation performed in a range of temperatures are in close agreement. T...

Journal: :The Journal of chemical physics 2007
P Szymczak Marek Cieplak

The conformational dynamics of a single protein molecule in a shear flow is investigated using Brownian dynamics simulations. A structure-based coarse grained model of a protein is used. We consider two proteins, ubiquitin and integrin, and find that at moderate shear rates they unfold through a sequence of metastable states-a pattern which is distinct from a smooth unraveling found in homopoly...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید