نتایج جستجو برای: transparent conductive films
تعداد نتایج: 137427 فیلتر نتایج به سال:
The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting th...
A new technique for the preparation of a highly clear and transparent emulsified aqueous solution containing immiscible monomer droplets with diameters of a few tens of nanometres under surfactant-free conditions using tandem acoustic emulsification is described. Highly conductive transparent polymer films were successfully prepared from such an emulsified solution.
Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiOx/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical condu...
The scattering properties of transparent conductive oxide (TCO) films into dielectric and semiconductor surrounding media are modeled and compared to experiment. The new approach is not only valid for smooth optical films but also for films with enhanced roughness in order to generate light trapping structures for thin film solar cells. ©2010 Optical Society of America. OCIS codes: (310.0310) t...
This communication reports a simple, one-pot procedure for the synthesis and processing of transparent and conductive thin films of graphene/polyaniline nanocomposites based on an interfacial polymerization. Thin films presenting transmittance of 89% and sheet resistance of 60.6 Ω sq(-1) are spontaneously obtained and can be easily transferred to suitable substrates.
Atomic layer deposition (ALD) is a technique that uses a cyclical exposure and purging of chemical precursors to create thin films. ALD offers a high degree of control over the thickness and composition of the films. The technique is generally used for binary compounds such as oxide and nitrides. ZnO is grown by ALD as a transparent conductive oxide for photovoltaic and optoelectronic applicati...
Articles you may be interested in Temperature dependence of terahertz optical characteristics and carrier transport dynamics in p-type transparent conductive CuCr1− x Mg x O2 semiconductor films Appl. Andreev nanoprobe of half-metallic CrO2 films using superconducting cuprate tips Appl.
High quality patterning of single-walled carbon nanotube (SWCNT) transparent conductive films is achieved by a lift-off aluminum interlayer method, which has the advantage of resulting in contamination-free and damage-free SWCNTs. The obtained patterns preserve the electrical properties of the SWCNT films and show promising applications in flexible high frequency electronic and display devices.
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 c...
Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices.
We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید