نتایج جستجو برای: the resolvent operator in banach space
تعداد نتایج: 21249799 فیلتر نتایج به سال:
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
we consider the transitive linear maps on the operator algebra $b(x)$for a separable banach space $x$. we show if a bounded linear map is norm transitive on $b(x)$,then it must be hypercyclic with strong operator topology. also we provide a sot-transitivelinear map without being hypercyclic in the strong operator topology.
We provide a geometrical interpretation for the best approximation of the discrete harmonic oscillator equation formulated in a general Banach space setting. We give a representation of the solution, and a characterization of maximal regularity-or well posednesssolely in terms of R-boundedness properties of the resolvent operator involved in the equation.
In this paper, a new monotonicity, M(·, ·)-monotonicity,is introduced in Banach spaces, and the resolvent operator of an M(·, ·)monotone operator is proved to be single valued and Lipschitz continuous. By using the resolvent operator technique associated with M(·, ·)monotone operators, we construct a proximal point algorithm for solving a class of variational inclusions. And we prove the conver...
Finiteness of the point spectrum of linear operators acting in a Banach space is investigated from point of view of perturbation theory. In the first part of the paper we present an abstract result based on analytical continuation of the resolvent function through continuous spectrum. In the second part, the abstract result is applied to differential operators which can be represented as a diff...
Let A and M be closed linear operators defined on a complex Banach space X. Using operator-valued Fourier multipliers theorems, we obtain necessary and sufficient conditions to guarantee existence and uniqueness of periodic solutions to the equation d dt (Mu(t)) = Au(t) + f(t), in terms of either boundedness or R-boundedness of the modified resolvent operator determined by the equation. Our res...
Let A be a bounded linear operator on a Banach space such that the resolvent of A is rational. If 0 is in the spectrum of A, then it is well known that A is Drazin invertible. We investigate spectral properties of the Drazin inverse of A. For example we show that the Drazin inverse of A is a polynomial in A.
Let A be a bounded operator on a Banach space X. A scalar λ is in the spectrum of A if the operator A − λ is not invertible. Case closed. What more is there to say? As anyone with the slightest exposure to operator theory will testify, there is so much out there that no book could come close to being comprehensive. What authors do in such situations is choose a small area or topic of interest t...
A Banach space operator T ∈ B(X ) is polaroid if points λ ∈ isoσσ(T ) are poles of the resolvent of T . Let σa(T ), σw(T ), σaw(T ), σSF+(T ) and σSF−(T ) denote, respectively, the approximate point, the Weyl, the Weyl essential approximate, the upper semi–Fredholm and lower semi–Fredholm spectrum of T . For A, B and C ∈ B(X ), let MC denote the operator matrix (
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید