نتایج جستجو برای: sugeno fuzzy systems

تعداد نتایج: 1257099  

2010
Leonardo Amaral Mozelli Reinaldo Martinez Palhares Rafael Ferreira dos Santos Alexandre Bazanella

Alternative LMI Conditions for Takagi-Sugeno Systems Via Fuzzy Lyapunov Function This paper deals with the stability analysis and control design for continuous Takagi-Sugeno fuzzy systems in a linear matrix inequality (LMI) framework. New LMI stability conditions are obtained by applying a relaxation strategy in a recently proposed fuzzy Lyapunov function. In these new LMI stability conditions,...

1997
B Fritzke

The poor scaling behavior of grid-partitioning fuzzy systems in case of increasing data dimensionality suggests using fuzzy systems with a scatter-partition of the input space. Jang has shown that zero-order Sugeno fuzzy systems are equivalent to radial basis function networks (RBFNs). Methods for nding scatter partitions for RBFNs are available, and it is possible to use them for creating scat...

2013
Vandna Kamboj Amrit Kaur

Load sensor is developed using mamdani fuzzy inference system and sugeno fuzzy inference system. It is two input and one output sensor. Both mamdani-type fuzzy inference system and sugeno-type fuzzy inference system are simulated using MATLAB fuzzy logic toolbox. This paper outlines the basic difference between these two fuzzy inference system and their simulated results are compared. Index Ter...

2007
Carlos Ariño Antonio Sala José Luis Navarro

When controlling Takagi-Sugeno fuzzy systems, verification of some sector conditions is usually assumed. However, setpoint changes may alter the sector bounds. Alternatively, setpoint changes may be considered as an offset addition in many cases, and hence affine Takagi-Sugeno models may be better suited to this problem. This work discusses a nonconstant change of variable in order to carry out...

2012
Jun Yoneyama Tomoaki Ishihara

The Takagi-Sugeno fuzzy model is described by fuzzy if-then rules which represent local linear systems of the underlining nonlinear systems (Takagi & Sugeno, 1985; Tanaka et al., 1996; Tanaka & Sugeno, 1992) and thus it can describe a wide class of nonlinear systems. In the last decade, nonlinear control design methods based on Takagi-Sugeno fuzzy system have been explored. Since the stability ...

2004
Radu-Emil Precup Stefan Preitl

The paper presents new Takagi-Sugeno fuzzy models for a class of plants characterized by Two Input-Single Output systems providing the fuzzy logic decision on the local model choice. In addition, it is provided a development method for controllers selected by Takagi-Sugeno-based decision rules to control these plants. The models and the development method are applied to speed control of electri...

2013
DUŠAN KROKAVEC ANNA FILASOVÁ

The paper deals with the problem of nonlinear fuzzy observers for a class of continuous-time nonlinear systems, represented by Takagi-Sugeno models with local nonlinear terms. On the basis of the Lyapunov stability criterion and incremental quadratic inequalities, the sufficient LMI design conditions are outlined. Numerical example is given to illustrate the procedure and to validate the perfor...

1999
Margarita Mas Gaspar Mayor Jaume Suñer

Fuzzy measures were introduced by M Sugeno in in order to express a grade of fuzziness in the same way that probability measures express a grade of random ness The Sugeno fuzzy integrals are the functionals with monotonicity de ned by using fuzzy measures Later on Murofushi and Sugeno proposed another type of fuzzy integral the Choquet integral based on the Capacity Theory developed by G Choque...

2011
Vladimír Olej Petr Hájek

The paper presents IF-inference systems of Takagi-Sugeno type. It is based on intuitionistic fuzzy sets (IF-sets), introduced by K.T. Atanassov, fuzzy t-norm and t-conorm, intuitionistic fuzzy t-norm and t-conorm. Thus, an IFinference system is developed for ozone time series prediction. Finally, we compare the results of the IF-inference systems across various operators.

Journal: :IEEE Trans. Fuzzy Systems 2000
Ke Zeng Nai-Yao Zhang Wen-Li Xu

Universal approximation is the basis of theoretical research and practical applications of fuzzy systems. Studies on the universal approximation capability of fuzzy systems have achieved great progress in recent years. In this paper, linear Takagi–Sugeno (T–S) fuzzy systems that use linear functions of input variables as rule consequent and their special case named simplified fuzzy systems that...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->