نتایج جستجو برای: spectral graph theory

تعداد نتایج: 1061952  

2010
Dragoš Cvetković Slobodan K. Simić

This is the third part of our work with a common title. The first [11] and the second part [12] will be also referred in the sequel as Part I and Part II, respectively. This third part was not planned at the beginning, but a lot of recently published papers on the signless Laplacian eigenvalues of graphs and some observations of ours justify its preparation. By a spectral graph theory we unders...

Journal: :Journal of Difference Equations and Applications 2021

We study a general class of recurrence relations that appear in the application matrix diagonalization procedure. find closed formula and determine analytical properties solutions. finally apply these findings several problems involving eigenvalues graphs.

Journal: :Discussiones Mathematicae Graph Theory 2020

Journal: :Linear Algebra and its Applications 2010

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم 1390

بررسی طیف گراف ها، ابزاری جهت بررسی گراف ها از دیدگاه جبری است. گراف های ds گراف هایی هستند که هیچ گراف غیر یکریخت دارای طیف ماتریس مجاورت یکسان با آنها نباشد. در این پایان نامه به بررسی خانواده گراف های و پرداخته و تحقیق می کنیم که آیا این گراف ها ds هستند یا خیر. در ضمن طیف ماتریس لاپلاسین گراف ها را تعریف و یکتایی گراف ها را تحت طیف ماتریس لاپلاسین بررسی می کنیم و نشان می دهیم که گراف و ...

Journal: :Linear Algebra and its Applications 2013

Journal: :Research Journal of Applied Sciences, Engineering and Technology 2014

Fatemeh Taghvaee Gholam Hossein Fath-Tabar,

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

2007
Xiao Bai

In this thesis we aim to develop a framework for graph characterization by combining the methods from spectral graph theory and manifold learning theory. The algorithms are applied to graph clustering, graph matching and object recognition. Spectral graph theory has been widely applied in areas such as image recognition, image segmentation, motion tracking, image matching and etc. The heat kern...

2016
JINGJING JENNY

This paper is dedicated to present a proof of the Spectral Theorem, and to discuss how the Spectral Theorem is applied in combinatorics and graph theory. In this paper, we also give insights into the ways in which this theorem unveils some mysteries in graph theory, such as expander graphs and graph coloring.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید