نتایج جستجو برای: signless laplacian resolvent energy
تعداد نتایج: 679943 فیلتر نتایج به سال:
Let G be a simple graph with order n and size m. The quantity $$M_1(G)=\sum _{i=1}^{n}d^2_{v_i}$$ is called the first Zagreb index of G, where $$d_{v_i}$$ degree vertex $$v_i$$ , for all $$i=1,2,\dots ,n$$ . signless Laplacian matrix $$Q(G)=D(G)+A(G)$$ A(G) D(G) denote, respectively, adjacency diagonal degrees G. $$q_1\ge q_2\ge \dots \ge q_n\ge 0$$ eigenvalues largest eigenvalue $$q_1$$ spectr...
Parallel to the signless Laplacian spectral theory, we introduce and develop the nonlinear spectral theory of signless 1-Laplacian on graphs. Again, the first eigenvalue μ1 of the signless 1-Laplacian precisely characterizes the bipartiteness of a graph and naturally connects to the maxcut problem. However, the dual Cheeger constant h+, which has only some upper and lower bounds in the Laplacia...
For n ≥ 11, we determine all the unicyclic graphs on n vertices whose signless Laplacian spectral radius is at least n− 2. There are exactly sixteen such graphs and they are ordered according to their signless Laplacian spectral radii.
In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number, and minimum degree of graphs which generalized Ore’s theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper we present the spectral analogues of Erdős’ theorem and Moon-Moser’s theorem, respectively. Let Gk n be the ...
We survey properties of spectra of signless Laplacians of graphs and discuss possibilities for developing a spectral theory of graphs based on this matrix. For regular graphs the whole existing theory of spectra of the adjacency matrix and of the Laplacian matrix transfers directly to the signless Laplacian, and so we consider arbitrary graphs with special emphasis on the non-regular case. The ...
Let G be a graph of order n such that ∑n i=0(−1)iaiλn−i and ∑n i=0(−1)ibiλn−i are the characteristic polynomials of the signless Laplacian and the Laplacian matrices of G, respectively. We show that ai ≥ bi for i = 0,1, . . . , n. As a consequence, we prove that for any α, 0 < α ≤ 1, if q1, . . . , qn and μ1, . . . ,μn are the signless Laplacian and the Laplacian eigenvalues of G, respectively,...
This is the third part of our work with a common title. The first [11] and the second part [12] will be also referred in the sequel as Part I and Part II, respectively. This third part was not planned at the beginning, but a lot of recently published papers on the signless Laplacian eigenvalues of graphs and some observations of ours justify its preparation. By a spectral graph theory we unders...
Let qmin(G) stand for the smallest eigenvalue of the signless Laplacian of a graph G of order n: This paper gives some results on the following extremal problem: How large can qmin (G) be if G is a graph of order n; with no complete subgraph of order r + 1? It is shown that this problem is related to the well-known topic of making graphs bipartite. Using known classical results, several bounds ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید