نتایج جستجو برای: signed graph
تعداد نتایج: 211450 فیلتر نتایج به سال:
A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair S = (G,σ) (S = (G,μ)) where G = (V, E) is a graph called underlying graph of S and σ : E → (e1, e2, ..., ek) (μ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called abbreviated a signed graph or a marked graph. Given a ...
This paper studies the choosability of signed planar graphs. We prove that every signed planar graph is 5-choosable and that there is a signed planar graph which is not 4-choosable while the unsigned graph is 4-choosable. For each k ∈ {3, 4, 5, 6}, every signed planar graph without circuits of length k is 4-choosable. Furthermore, every signed planar graph without circuits of length 3 and of le...
A signed graph is a graph in which every edge is designated to be either positive or negative; it is balanced if every cycle contains an even number of negative edges. A marked signed graph is a signed graph each vertex of which is designated to be positive or negative, and it is consistent if every cycle in the signed graph possesses an even number of negative vertices. Signed line graph L(S) ...
A signed k-partite graph (signed multipartite graph) is a k-partite graph in which each edge is assigned a positive or a negative sign. If G(V1, V2, · · · , Vk) is a signed k-partite graph with Vi = {vi1, vi2, · · · , vini}, 1 ≤ i ≤ k, the signed degree of vij is sdeg(vij) = dij = d + ij − d − ij , where 1 ≤ i ≤ k, 1 ≤ j ≤ ni and d + ij(d − ij) is the number of positive (negative) edges inciden...
In a signed graph G, a negative clique is a complete subgraph having negative edges only. In this article, we give characteristic polynomial expressions, and eigenvalues of some signed graphs having negative cliques. This includes signed cycle graph, signed path graph, a complete graph with disjoint negative cliques, and star block graph with negative cliques.
A graph whose edges are labeled either as positive or negative is called a signed graph. A signed graph is said to be net-regular if every vertex has constant net-degree k, namely, the difference between the number of positive and negative edges incident with a vertex. In this paper, we analyze some properties of co-regular signed graphs which are net-regular signed graphs with the underlying g...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید