نتایج جستجو برای: shape memory alloys
تعداد نتایج: 479429 فیلتر نتایج به سال:
Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life...
The nickel-titanium (Ni-Ti) alloys used in endodontics contain 56% Ni and 44% Ti. The 2 unique features related to clinical dentistry (i.e., shape memory effect and superelasticity) are due to the transition from austenite to martensite in Ni-Ti alloy. When a superelastic Ni-Ti alloy undergoes a low tensile loading, normal elastic behavior occurs. In fact, at higher tensile loads, the elastic s...
Shape memory alloys (SMAs), in comparison to other materials, have the exceptional ability change their properties, structures, and functionality, depending on thermal, magnetic, and/or stress fields applied[...]
Shape memory alloys have attracted much attention due to their attractive properties for applications as well as their basic aspects of deformation and transformation in structural and magnetic behavior. In 1951, the Au–Cd alloy was discovered [1]. After that, numberless shape memory alloys have been developed. A lot of applications of shape memory alloys were realized after the Ti–Ni alloy was...
THE TERM SHAPE MEMORY ALLOYS (SMA) is applied to that group of metallic materials that demonstrate the ability to return to some previously defined shape or size when subjected to the appropriate thermal procedure. Generally, these materials can be plastically deformed at some relatively low temperature, and upon exposure to some higher temperature will return to their shape prior to the deform...
Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensit...
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrys...
This paper presents a three-dimensional constitutive model for shape-memory alloys that generalizes the one-dimensional model presented earlier (Sadjadpour and Bhattacharya 2007 Smart Mater. Struct. 16 S51–62). These models build on recent micromechanical studies of the underlying microstructure of shape-memory alloys, and a key idea is that of an effective transformation strain of the martensi...
are compared with the experimental results. In these test results the shape memory alloys behavior as: super elasticity under various temperatures, loading rate effects, asymmetry in tension and pressure, various loops of loading and unloading, hydrostatic pressure effects, different proportional tension-shear biaxial loading and unloading, and also deviation from normality due to non-proportio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید