نتایج جستجو برای: selection combining
تعداد نتایج: 444897 فیلتر نتایج به سال:
This paper proposes a feature selection method that combines various feature selection techniques. Feature selection has been realized as one of the most important processes in various applications, especially pattern classification problems. When too many attributes are involved, training a machine to classify patterns into their respective classes is seemingly impossible. Hence, selecting goo...
Model combining (mixing) methods have been proposed in recent years to deal with uncertainty in model selection. Even though advantages of model combining over model selection have been demonstrated in simulations and data examples, it is still unclear to a large extent when model combining should be preferred. In this work, firstly, an instability measure to capture the uncertainty of model se...
This paper describes the work on methods for combining rules obtained by machine learning systems. Three methods for obtaining the classification of examples with those rules are compared. The advantages and disadvantages of each method are discussed and the results obtained on three real world domains are commented. The methods compared are: selection of the best rule; PROSPECTOR-like probabil...
classification ensemble, which uses the weighed polling of outputs, is the art of combining a set of basic classifiers for generating high-performance, robust and more stable results. this study aims to improve the results of identifying the persian handwritten letters using error correcting output coding (ecoc) ensemble method. furthermore, the feature selection is used to reduce the costs of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید