نتایج جستجو برای: rooting depth

تعداد نتایج: 164156  

Journal: :Journal of environmental quality 2003
Alan J Franzluebbers John A Stuedemann

Fate of applied N in forage-based agricultural systems is important to long-term production and environmental impacts. We evaluated the factorial combination of N fertilization targeted to supply 20 g N m 2 yr(-1) and harvest strategies on soil-profile inorganic N during the first 5 yr of 'Coastal' bermudagrass [Cynodon dactylon (L.) Pers.] management. Harvest strategy had much larger effects t...

Journal: :Tree physiology 2011
Remko A Duursma Craig V M Barton Derek Eamus Belinda E Medlyn David S Ellsworth Michael A Forster David T Tissue Sune Linder Ross E McMurtrie

Elevated atmospheric [CO(2)] (eC(a)) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eC(a) in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their C(a) treatments before a 4-month dry-down. Trees ...

2015
Ai Zhan Jonathan P Lynch

Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing countries, while in developed countries, intensive N fertilization is a primary economic, energy, and environmental cost for crop production. We tested the hypothesis that under low-N conditions, maize (Zea mays) lines with few but long (FL) lateral roots would have greater axial root elongation, deep...

2016
Yingzhi Gao Jonathan P Lynch

In this study we test the hypothesis that maize genotypes with reduced crown root number (CN) will have greater root depth and improved water acquisition from drying soil. Maize recombinant inbred lines with contrasting CN were evaluated under water stress in greenhouse mesocosms and field rainout shelters. CN varied from 25 to 62 among genotypes. Under water stress in the mesocosms, genotypes ...

Journal: :Tree physiology 2006
Edwin C Rowe Meine Van Noordwijk Didik Suprayogo Georg Cadisch

Trees in cropped fields may improve nitrogen (N) use efficiency by intercepting leached N, but crop yield will be reduced if the trees compete strongly with crops for N. Ideal trees for intercropping will take up N from deeper soil layers not accessed by the crop species. Spatiotemporal aspects of tree nitrogen capture niches were investigated within a hedgerow intercropping system by placing 1...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید