نتایج جستجو برای: roman libertin
تعداد نتایج: 13968 فیلتر نتایج به سال:
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. The Roman reinforc...
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...
A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...
A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f (x) = 0 is adjacent to at least one vertex y with f (y) = 2. The weight of a Roman dominating function is defined to be f (V ) = ∑ x∈V f (x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we first answer ...
A Roman dominating function of a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pro...
The practice of Common Law and Roman Law differ, even though both systems in theory permit what they don't prohibit. The Common Practice derived from Common Law in fact truly does tend to permit what it doesn't prohibit, while the Roman Practice derived from Roman Law tends to prohibit what it doesn't permit. Tracing the historical sources for the evolutionary divergence between current Roman P...
Our first tendency is to look outside Europe when searching for ancient rhetorics that do not follow the Greco-Roman tradition. After all, much of European culture was strongly influenced by Roman culture, especially following the conquests of Julius Caesar in 58-51 BCE and subsequent conquests that brought most of Europe under Roman control. Rome’s civic practices, including variations of Grec...
A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید