نتایج جستجو برای: riemann liouville fractional derivatives
تعداد نتایج: 178161 فیلتر نتایج به سال:
We study dynamic minimization problems of the calculus of variations with Lagrangian functionals containing Riemann–Liouville fractional integrals, classical and Caputo fractional derivatives. Under assumptions of regularity, coercivity and convexity, we prove existence of solutions. AMS Subject Classifications: 26A33, 49J05.
in this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. we approximate the exact solution by use of radial basis function(rbf) collocation method. this techniqueplays an important role to reduce a fractional dierential equation to a system of equations. the numerical results demonstrate the accuracy and ability of this me...
1 Professor and author of correspondence, Phone: +91 3222-283084, Fax: +91 3222 255303, Email: [email protected] ABSTRACT A numerical technique for the solution of a class of fractional optimal control problems has been proposed in this paper. The technique can used for problems defined both in terms of Riemann-Liouville and Caputo fractional derivatives. In this technique a Reflection Op...
We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve different...
the aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (pde) in the electroanalytical chemistry. the space fractional derivative is described in the riemann-liouville sense. in the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the grunwald- letnikov discretization of the ri...
Based on high order approximation of L-stable RungeKutta methods for the Riemann-Liouville fractional derivatives, several classes of high order fractional Runge-Kutta methods for solving nonlinear fractional differential equation are constructed. Consistency, convergence and stability analysis of the numerical methods are given. Numerical experiments show that the proposed methods are efficien...
It is well known that the complex step method is a tool that calculates derivatives by imposing a complex step in a strict sense. We extended the method by employing the fractional calculus differential operator in this paper. The fractional calculus can be taken in the sense of the Caputo operator, Riemann-Liouville operator, and so forth. Furthermore, we derived several approximations for com...
The fractional derivatives in the sense of modified Riemann-Liouville derivative and the improved fractional sub-equation method are employed for constructing the exact solutions of nonlinear fractional partial differential equations. By means of this method, the space-time fractional generalized Hirota-Satsuma coupled Kortewegde Vries equations are successfully solved. As a result, three types...
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
in this article, an analytical approximate solution of nonlinear fractional convection-diffusion with modifiedriemann-liouville derivative was obtained with the help of fractional variational iteration method (fvim). a newapplication of fractional variational iteration method (fvim) was extended to derive analytical solutions in theform of a series for this equation. it is indicated that the so...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید