نتایج جستجو برای: restrained domination

تعداد نتایج: 11819  

2007
Nader Jafari Rad N. Jafari Rad

Let G = (V,E) be a graph. A set S ⊆ V (G) is a total restrained dominating set if every vertex of G is adjacent to a vertex in S and every vertex of V (G)\S is adjacent to a vertex in V (G)\S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. In this paper we continue the study of total restrained domination in...

2016
V. R. Kulli

Let D be a minimum secure restrained dominating set of a graph G = (V, E). If V – D contains a restrained dominating set D' of G, then D' is called an inverse restrained dominating set with respect to D. The inverse restrained domination number γr(G) of G is the minimum cardinality of an inverse restrained dominating set of G. The disjoint restrained domination number γrγr(G) of G is the minimu...

Journal: :Discussiones Mathematicae Graph Theory 2012
Hong-yu. Chen Xue-Gang Chen Wai Chee Shiu Pak Kiu Sun

Let G = (V,E) be a graph. A total restrained dominating set is a set S ⊆ V where every vertex in V \ S is adjacent to a vertex in S as well as to another vertex in V \S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by γ r (G), is the smallest cardinality of a total restrained dominating set of G. We determine lower and upper boun...

Journal: :Discrete Mathematics 2008
Johannes H. Hattingh Elizabeth Jonck Ernst J. Joubert Andrew R. Plummer

Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V − S is adjacent to a vertex in V − S. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The total restrained domination number of G (restrained domination number of G, respectively),...

Journal: :Discrete Mathematics 2007

Journal: :IOSR Journal of Engineering 2012

Journal: :Computers & Mathematics with Applications 2011

Journal: :Acta Universitatis Sapientiae, Mathematica 2020

Journal: :Journal of Physics: Conference Series 2021

Journal: :Rairo-operations Research 2021

For a graph $G=(V(G),E(G))$, an Italian dominating function (ID function) $f:V(G)\rightarrow\{0,1,2\}$ has the property that for every vertex $v\in V(G)$ with $f(v)=0$, either $v$ is adjacent to assigned $2$ under $f$ or least two vertices $1$ $f$. The weight of ID $\sum_{v\in V(G)}f(v)$. domination number minimum taken over all functions $G$. In this paper, we initiate study variant functions....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید