نتایج جستجو برای: reflective subcategory
تعداد نتایج: 18486 فیلتر نتایج به سال:
In this paper, we introduce the notion of $M$-fuzzifying interval spaces, and discuss the relationship between $M$-fuzzifying interval spaces and $M$-fuzzifying convex structures.It is proved that the category {bf MYCSA2} can be embedded in the category {bf MYIS} as a reflective subcategory, where {bf MYCSA2} and {bf MYIS} denote the category of $M$-fuzzifying convex structures of...
The aim of this paper is to study the categorical relations between matroids, Goetschel-Voxman’s fuzzy matroids and Shi’s fuzzifying matroids. It is shown that the category of fuzzifying matroids is isomorphic to that of closed fuzzy matroids and the latter is concretely coreflective in the category of fuzzy matroids. The category of matroids can be embedded in that of fuzzifying matroids as a ...
Any semi-abelian category A appears, via the discrete functor, as a full replete reflective subcategory of the semi-abelian category of internal groupoids in A. This allows one to study the homology of n-fold internal groupoids with coefficients in a semi-abelian category A, and to compute explicit higher Hopf formulae. The crucial concept making such computations possible is the notion of prot...
This paper presents the concepts of (L,M)-remotehood spaces and (L,M)-convergence in framework (L,M)-fuzzy convex spaces. Firstly, it is shown that category isomorphic to Secondly, proved can be embedded as a reflective subcategory. Finally, preconvex (L,M)- convergence are introduced
Consider L being a continuous lattice, two functors from the category of convex spaces (denoted by CS) to the category of stratified L-convex spaces (denoted by SL-CS) are defined. The first functor enables us to prove that the category CS can be embedded in the category SL-CS as a reflective subcategory. The second functor enables us to prove that the category CS can be embedded in the categor...
The aim of this paper is to establish some Cartesian closed categories which are between the two Cartesian closed categories: SLP (the category of L-domains and stable functions) and DI (the full subcategory of SLP whose objects are all dI-domains). First we show that the exponentials of every full subcategory of SLP are exactly the spaces of stable functions. Then we prove that the full subcat...
Each full reflective subcategory X of a finitely-complete category C gives rise to a factorization system (E,M) on C, where E consists of the morphisms of C inverted by the reflexion I : C → X . Under a simplifying assumption which is satisfied in many practical examples, a morphism f : A → B lies in M precisely when it is the pullback along the unit ηB : B → IB of its reflexion If : IA → IB; w...
Necessary and sufficient conditions are given for the EilenbergMoore comparison functor <1> arising from a functor U (having a left adjoint) to be a Galois connection in the sense of J. R. Isbell, in which case the functor U is said to be of subdescent type. These conditions, when applied to a contravariant hom-functor U = C(-, B) : C°p -» Set, read like a kind of functional completeness axiom ...
We prove that, in a triangulated category with combinatorial models, every localizing subcategory is coreflective and every colocalizing subcategory is reflective if a certain large-cardinal axiom (Vopěnka’s principle) is assumed true. It follows that, under the same assumptions, orthogonality sets up a bijective correspondence between localizing subcategories and colocalizing subcategories. Th...
In addition to exploring constructions and properties of limits and colimits in categories of topological algebras, we study special subcategories of topological algebras and their properties. In particular, under certain conditions, reflective subcategories when paired with topological structures give rise to reflective subcategories and epireflective subcategories give rise to epireflective s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید