نتایج جستجو برای: real banach algebra
تعداد نتایج: 607694 فیلتر نتایج به سال:
Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule. Then ${mathcal{S}}=A oplus X$, the $l^1$-direct sum of $A$ and $X$ becomes a module extension Banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ In this paper, we investigate biflatness and biprojectivity for these Banach algebras. We also discuss on automatic continuity of derivations on ${mathcal{S...
Let $mathcal{A}$ be a Banach algebra and $X$ be a Banach $mathcal{A}-$bimodule. We study the notion of approximate $n-$ideal amenability for module extension Banach algebras $mathcal{A}oplus X$. First, we describe the structure of ideals of this kind of algebras and we present the necessary and sufficient conditions for a module extension Banach algebra to be approximately n-ideally amenable.
A Banach lattice algebra is a Banach lattice, an associative algebra with a sub-multiplicative norm and the product of positive elements should be positive. In this note we study the Arens regularity and cohomological properties of Banach lattice algebras.
we commence by using from a new norm on l1(g) the -algebra of all integrable functions on locally compact group g, to make the c-algebra c(g). consequently, we find its dual b(g), which is a banach algebra so-called fourier-stieltjes algebra, in the set of all continuous functions on g. we consider most of important basic theorems about this algebra. this consideration leads to a rather com...
We show that if T is an isometry (as metric spaces) from an open subgroup of the invertible group A of a unital Banach algebra A onto an open subgroup of the invertible group B of a unital Banach algebra B, then T is extended to a real-linear isometry up to translation between these Banach algebras. We consider multiplicativity or unti-multiplicativity of the isometry. Note that a unital linear...
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
In this paper, we show that every surjective $n$-homomorphism ($n$-anti-homomorphism) from a Banach algebra $A$ into a semisimple Banach algebra $B$ is continuous.
For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a suffici...
For a Banach algebra $A$, $A''$ is $(-1)$-Weakly amenable if $A'$ is a Banach $A''$-bimodule and $H^1(A'',A')={0}$. In this paper, among other things, we study the relationships between the $(-1)$-Weakly amenability of $A''$ and the weak amenability of $A''$ or $A$. Moreover, we show that the second dual of every $C^ast$-algebra is $(-1)$-Weakly amenable.
Let A be a Banach algebra. A is called ideally amenable if for every closed ideal I of A, the first cohomology group of A with coefficients in I* is trivial. We investigate the closed ideals I for which H1 (A,I* )={0}, whenever A is weakly amenable or a biflat Banach algebra. Also we give some hereditary properties of ideal amenability.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید