نتایج جستجو برای: ranking models

تعداد نتایج: 937834  

Journal: :Proceedings of the ... AAAI Conference on Artificial Intelligence 2022

For personalized ranking models, the well-calibrated probability of an item being preferred by a user has great practical value. While existing work shows promising results in image classification, calibration not been much explored for ranking. In this paper, we aim to estimate calibrated how likely will prefer item. We investigate various parametric distributions and propose two methods, name...

Journal: :Journal of the American Statistical Association 1960

Journal: :iranian journal of optimization 0
shokrollah ziari department of mathematics, firoozkooh branch, islamic azad university, firoozkooh, iran manaf sharifzadeh department of computer, firoozkooh branch, islamic azad university, firoozkooh, iran

in many applications, ranking of decision making units (dmus) is a problematic technical task procedure to decision makers in data envelopment analysis (dea), especially when there are extremely efficient dmus. in such cases, many dea models may usually get the same efficiency score for different dmus. hence, there is a growing interest in ranking techniques yet. the purpose of this paper is ra...

2000
Thomas M. English

A considerable amount of research has addressed the methods and objectives of model combination. Very little attention has been given to the question of how to obtain a good collection of models for combination. Here a rationale for inductive inference of multiple models of time series is developed in terms of algorithmic information theory. A model-based Kolmogorov sufficient statistic is desc...

2014
Pranjal Awasthi Avrim Blum Aravindan Vijayaraghavan

This work concerns learning probabilistic models for ranking data in a heteroge-neous population. The specific problem we study is learning the parameters of aMallows Mixture Model. Despite being widely studied, current heuristics for thisproblem do not have theoretical guarantees and can get stuck in bad local optima.We present the first polynomial time algorithm which provably...

M. S. Fallahnezhad, S. Barak,

Regarding the fact that getting a suitable combination of the human resources and service stations is one of the important issues in the most service and manufacturing environments, In this paper, we have studied the two models of planning queuing systems and its effect on the cost of the each system by using two fuzzy queuing models of M/M/1 and M/E2/1. In the first section, we have compar...

In evaluating the efficiency of decision making units (DMUs) by Data Envelopment Analysis (DEA) models, may be more than one DMU has an efficiency score equal to one. Since ranking of efficient DMUs is essential for decision makers, therefore, methods and models for this purpose are presented. One of ranking methods of efficient DMUs is cooperative game theory. In this study, Lee and Lozano mod...

In many applications, ranking of decision making units (DMUs) is a problematic technical task procedure to decision makers in data envelopment analysis (DEA), especially when there are extremely efficient DMUs. In such cases, many DEA models may usually get the same efficiency score for different DMUs. Hence, there is a growing interest in ranking techniques yet. The purpose of this paper is ra...

A. Zandi Z. Molaee

Data envelopment analysis (DEA) with considering the best condition for each decision making unit (DMU) assesses the relative efficiency for it and divides a homogenous group of DMUs in to two categories: efficient and inefficient, but traditional DEA models can not rank efficient DMUs. Although some models were introduced for ranking efficient DMUs, Franklin Lio & Hsuan peng (2008), proposed a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->