نتایج جستجو برای: r clean ring

تعداد نتایج: 590117  

2008
XIANDE YANG

A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute with each other. A recent result of Borooah, Diesl and Dorsey [3] completely characterized the commutative local rings R for which Mn(R) is strongly clean. For a general local ring R and n > 1, however, it is unknown when the matrix ring Mn(R) is strongly clean. Here we completely determi...

Journal: :Int. J. Math. Mathematical Sciences 2006
Weixing Chen

Throughout this paper R denotes an associative ring with identity and all modules are unitary. We use the symbol U(R) to denote the group of units of R and Id(R) the set of idempotents of R, Un(R) the set of elements which are the sum of n units of R, UΣ(R) the set of elements each of which is the sum of finitely many units in R, RE(R) (URE(R)) the set of regular (unit regular) elements of R, a...

Journal: :journal of algebra and related topics 2016
s. halicioglu m. b. calci a. harmanci

in this paper, we introduce a class of $j$-quasipolar rings. let $r$ be a ring with identity. an element $a$ of a ring $r$ is called {it weakly $j$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $j(r)$ and the ring $r$ is called {it weakly $j$-quasipolar} if every element of $r$ is weakly $j$-quasipolar. we give many characterizations and investiga...

2008
LINGLING FAN XIANDE YANG

Let R be an associative ring with identity, C(R) denote the center of R, and g(x) be a polynomial in the polynomial ring C(R)[x]. R is called strongly g(x)-clean if every element r ∈ R can be written as r = s+u with g(s) = 0, u a unit of R, and su = us. The relation between strongly g(x)-clean rings and strongly clean rings is determined, some general properties of strongly g(x)-clean rings are...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز 1379

‏‎for the first time nakayama introduced qf-ring. in 1967 carl. faith and elbert a. walker showed that r is qf-ring if and only if each injective right r-module is projective if and only if each injective left r-modules is projective. in 1987 s.k.jain and s.r.lopez-permouth proved that every ring homomorphic images of r has the property that each cyclic s-module is essentialy embeddable in dire...

Let R be a commutative ring and G(R) be a graph with vertices as proper andnon-trivial ideals of R. Two distinct vertices I and J are said to be adjacentif and only if I + J = R. In this paper we study a graph constructed froma subgraph G(R)Δ(R) of G(R) which consists of all ideals I of R such thatI Δ J(R), where J(R) denotes the Jacobson radical of R. In this paper westudy about the relation b...

In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...

2008
LINGLING FAN XIANDE YANG

A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...

2005
FRANÇOIS COUCHOT

It is proved that a commutative ring is clean if and only if it is Gelfand with a totally disconnected maximal spectrum. It is shown that each indecomposable module over a commutative ring R satisfies a finite condition if and only if R P is an artinian valuation ring for each maximal prime ideal P. Commutative rings for which each indecomposable module has a local endomorphism ring are studied...

2009
Francois Couchot

It is shown that a commutative Bézout ring R with compact minimal prime spectrum is an elementary divisor ring if and only if so is R/L for each minimal prime ideal L. This result is obtained by using the quotient space pSpec R of the prime spectrum of the ring R modulo the equivalence generated by the inclusion. When every prime ideal contains only one minimal prime, for instance if R is arith...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید