نتایج جستجو برای: pso clustering
تعداد نتایج: 112975 فیلتر نتایج به سال:
Clustering is one of the most commonly techniques in Data Mining. Kmeans is one of the most popular clustering techniques due to its simplicity and efficiency. However, it is sensitive to initialization and easily trapped in local optima. K-harmonic means clustering solves the problem of initialization using a built-in boosting function, but it is suffering from running into local optima. Parti...
Unsupervised fuzzy clustering algorithms are one of many approaches used in image segmentation. The Fuzzy C-means algorithm (FCM) and the Possibilistic C-means algorithm (PCA) have been widely used. There is also the generalized possibilistic algorithm (GPCA). GPCA was proposed recently and is a general form of the previous algorithms. These clustering algorithms can be trapped to the local opt...
Generally speaking, in anomaly intrusion detection, modeling the normal behavior of activities performed by a user or a program is an important issue. Currently most machine-learning algorithms which are widely used to establish user’s normal behaviors need labeled data for training first, so they are computational expensive and sometimes misled by artificial data. This study proposes a PSO-bas...
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has bee...
In this paper, the authors study the parameter sensitivity of the technique of particles warm optimization (PSO) for the clustering of data, in particular the text. They experienced the PSO parameters by varying within a range of research and we noted the best result of clustering based on three measures of assessment, internal, which is the index of Davies and Bouldin and two external based on...
Image segmentation refers to the technology to segment the image into different regions with different characteristics and to extract useful objectives, and it is a key step from image processing to image analysis. Based on the comprehensive study of image segmentation technology, this paper analyzes the advantages and disadvantages of the existing fuzzy clustering algorithms; integrates the pa...
In this paper, the proposed approach is an unique combination of two most popular clustering algorithms Particle Swarm Optimization (PSO) and K-Means to achieve better clustering result. Clustering is a technique of grouping homogeneous objects of a dataset with aim to extract some meaningful pattern or information. K-Means algorithm is the most popular clustering algorithm because of its easy ...
The volume of digitized text documents on the web have been increasing rapidly. As there is huge collection of data on the web there is a need for grouping(clustering) the documents into clusters for speedy information retrieval. Clustering of documents is collection of documents into groups such that the documents within each group are similar to each other and not to documents of other groups...
The proposed approach brings up a manner of cognitiveness that inherits a paradigm in particle swarm optimization to implement a chaotic mapping and enhanced by K-means clustering algorithm. In this work, named KCPSO, chaotic mapping with ergodicity, irregularity and the stochastic properties in PSO contributes to global search while K-means with clustering properties in PSO results in rapid co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید