نتایج جستجو برای: perfect ring
تعداد نتایج: 168366 فیلتر نتایج به سال:
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
let r be an associative ring with identity, c(r) be the category of com-plexes of r-modules and flat(c(r)) be the class of all at complexes of r-modules. we show that the at cotorsion theory (flat(c(r)); flat(c(r))−)have enough injectives in c(r). as an application, we prove that for each atcomplex f and each complex y of r-modules, exti (f,x)= 0, whenever ris n-perfect and i > n.
A characterization of perfect semigroup rings A[G] is given by means of the properties of the ring A and the semigroup G. It was proved in [10] that for a ring with unity A and a group G the group ring A[G] is perfect if and only if A is perfect and G is finite. Some results on perfectness of semigroup rings were obtained by Domanov [3]. He reduced the problem of describing perfect semigroup ri...
this thesis is presented 10 ghz voltage controlled ring oscillator for high speed application. the voltage controlled ring oscillator was designed and fabricated in 0.13یm cmos technology. the oscillator is 7-stages ring oscillator with one inverter replaced by nand-gate for shutting down in the ring oscillator during idle mode. tri-state inverter was used to control of 126 bit vector in ri...
A ring is called n-perfect (n ≥ 0), if every flat module has projective dimension less or equal than n. In this paper, we show that the n-perfectness relate, via homological approach, some homological dimension of rings. We study n-perfectness in some known ring constructions. Finally, several examples of n-perfect rings satisfying special conditions are given.
In this work, we introduce $H^*$-condition on the set of submodules of a module. Let $M$ be a module. We say $M$ satisfies $H^*$ provided that for every submodule $N$ of $M$, there is a direct summand$D$ of $M$ such that $(N+D)/N$ and $(N+D)/D$ are cosingular. We show that over a right perfect right $GV$-ring,a homomorphic image of a $H^*$ duo module satisfies $H^*$.
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.
We introduce and study the concept of $alpha $-semi short modules.Using this concept we extend some of the basic results of $alpha $-short modules to $alpha $-semi short modules.We observe that if $M$ is an $alpha $-semi short module then the dual perfect dimension of $M$ is $alpha $ or $alpha +1$.%In particular, if a semiprime ring $R$ is $alpha $-semi short as an $R$-module, then its Noetheri...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید