نتایج جستجو برای: parseval continuous g frame
تعداد نتایج: 783806 فیلتر نتایج به سال:
In this paper we present a constructive proof that the set of Gabor frames is pathconnected in the L2(Rn)-norm. In particular, this result holds for the set of Gabor Parseval frames as well as for the set of Gabor orthonormal bases. In order to prove this result, we introduce a construction which shows exactly how to modify a Gabor frame or Parseval frame to obtain a new one with the same prope...
in this paper, we characterize multiresolution analysis(mra) parseval frame multiwavelets in l^2(r^d) with matrix dilations of the form (d f )(x) = sqrt{2}f (ax), where a is an arbitrary expanding dtimes d matrix with integer coefficients, such that |deta| =2. we study a class of generalized low pass matrix filters that allow us to define (and construct) the subclass of mra tight frame multiwav...
In this paper, we characterize multiresolution analysis(MRA) Parseval frame multiwavelets in L^2(R^d) with matrix dilations of the form (D f )(x) = sqrt{2}f (Ax), where A is an arbitrary expanding dtimes d matrix with integer coefficients, such that |detA| =2. We study a class of generalized low pass matrix filters that allow us to define (and construct) the subclass of MRA tight frame multiwa...
In this article we introduce the notion of J-Parseval fusion frames in a Krein space K and characterize 1-uniform J-Parseval fusion frames with ζ = √ 2. We provide some results regarding construction of new J-tight fusion frame from given J-tight fusion frames. We also characterize an uniformly J-definite subspace of a Krein space K in terms of J-fusion frame. Finally we generalize the fundamen...
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a frame for signal representation. In this paper, we study the existence and construction of fusion frames. We first present a complete characterization...
We develop a natural generalization of vector-valued frame theory, which we term operator-valued frame theory, using operator-algebraic methods. This extends work of the second author and D. Han which can be viewed as the multiplicity one case and extends to higher multiplicity their dilation approach. We prove several results for operator-valued frames concerning duality, disjointedness, compl...
In this paper, we introduce $(mathcal{C},mathcal{C}')$-controlled continuous $g$-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frames is a $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frame. Also, we investigate when a $(mathcal{C},mathca...
We develop a natural generalization of vector-valued frame theory, we term operator-valued frame theory, using operator-algebraic methods. This extends work of the second author and D. Han which can be viewed as the multiplicity one case and extends to higher multiplicity their dilation approach. We prove several results for operator-valued frames concerning duality, disjointeness, complementar...
In this paper, we study the construction of irregular shearlet systems, i.e., systems of the form SH(ψ,Λ) = {a− 4 ψ(A−1 a S−1 s (x− t)) : (a, s, t) ∈ Λ}, where ψ ∈ L(R), Λ is an arbitrary sequence in R ×R×R2, Aa is a parabolic scaling matrix and Ss a shear matrix. These systems are obtained by appropriately sampling the Continuous Shearlet Transform. We derive sufficient conditions for such a d...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید