نتایج جستجو برای: pamp triggered immunity
تعداد نتایج: 138583 فیلتر نتایج به سال:
Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator...
The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC30...
Perception of pathogen-associated molecular patterns (PAMPs) constitutes the first layer of plant innate immunity and is referred to as PAMP-triggered immunity (PTI). For a long time, part of the plant community was sceptical about the importance of PAMP perception in plants. Genetic and biochemical studies have recently identified pattern-recognition receptors (PRRs) involved in the perception...
The phytopathogenic bacterium Pseudomonas syringae can suppress both pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) by the injection of type III effector (T3E) proteins into host cells. T3Es achieve immune suppression using a variety of strategies including interference with immune receptor signaling, blocking RNA pathways and vesicle...
The downy mildew (Hyaloperonospora parasitica) effector proteins ATR1 and ATR13 trigger RPP1-Nd/WsB- and RPP13-Nd-dependent resistance, respectively, in Arabidopsis thaliana. To better understand the functions of these effectors during compatible and incompatible interactions of H. parasitica isolates on Arabidopsis accessions, we developed a novel delivery system using Pseudomonas syringae typ...
Immunity of plants triggered by pathogen-associated molecular patterns (PAMPs) is based on the execution of an evolutionarily conserved defense response that includes the accumulation of pathogenesis-related (PR) proteins as well as multiple other defenses. The most abundant PR transcript of barley (Hordeum vulgare) leaf epidermis attacked by the powdery mildew fungus Blumeria graminis f. sp ho...
Plants can activate defence to pathogen attack by two layers of innate immunity: basal immunity triggered by pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) linked with programmed cell death. Flg22 and Harpin are evolutionary distinct bacterial PAMPs. We have previously shown that Harpin triggers hypersensitive cell death mimicking ETI...
Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the...
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resul...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید