نتایج جستجو برای: outer independent 2 rainbow domination number

تعداد نتایج: 3742550  

2015
Wing-Kai Hon Ton Kloks Hsiang Hsuan Liu Hung-Lung Wang

Let k ∈ N and let G be a graph. A function f : V (G) → 2 is a rainbow function if, for every vertex x with f(x) = ∅, f(N(x)) = [k]. The rainbow domination number γkr(G) is the minimum of ∑ x∈V (G) |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs.

Journal: :AKCE International Journal of Graphs and Combinatorics 2016

2017
Kuo-Hua Wu Jia-Jie Liu Yue-Li Wang Chiun-Chieh Hsu Lishan Liu

Abstract: A 2-rainbow domination function of a graph G = (V, E) is a function f mapping each vertex v to a subset of {1, 2} such that ⋃ u∈N(v) f (u) = {1, 2} when f (v) = �, where N(v) is the open neighborhood of v. The weight of f is denoted by wf (G) = ∑ v∈V �f (v)�. The 2-rainbow domination number, denoted by r2(G), is the smallest wf (G) among all 2-rainbow domination functions f of G. The ...

Journal: :Discrete Applied Mathematics 2013
Tadeja Kraner Sumenjak Douglas F. Rall Aleksandra Tepeh

A k-rainbow dominating function of a graph G is a map f from V (G) to the set of all subsets of {1, 2, . . . , k} such that {1, . . . , k} = ⋃ u∈N(v) f(u) whenever v is a vertex with f(v) = ∅. The k-rainbow domination number of G is the invariant γrk(G), which is the minimum sum (over all the vertices of G) of the cardinalities of the subsets assigned by a k-rainbow dominating function. We focu...

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

Journal: :Discrete Applied Mathematics 2007
Bostjan Bresar Tadeja Kraner Sumenjak

The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism G K2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is sho...

Journal: :Discrete Mathematics 2013
Timothy D. LeSaulnier Douglas B. West

Let G be an edge-colored graph with n vertices. A rainbow subgraph is a subgraph whose edges have distinct colors. The rainbow edge-chromatic number of G, written χ̂′(G), is the minimum number of rainbow matchings needed to cover E(G). An edgecolored graph is t-tolerant if it contains no monochromatic star with t+1 edges. If G is t-tolerant, then χ̂′(G) < t(t+ 1)n lnn, and examples exist with χ̂′(...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید