نتایج جستجو برای: outer independent 2 rainbow dominating function
تعداد نتایج: 3798565 فیلتر نتایج به سال:
Assume we have a set of k colors and to each vertex of a graph G we assign an arbitrary subset of these colors. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this is called the k-rainbow dominating function of a graph G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G,...
A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V (G) \D is independent. The double outer-independent domination number of a graph G, denoted by γ d (G), is the minimum cardinality of a double outer-indepe...
Let D = (V,A) be a finite and simple digraph. A II-rainbow dominating function (2RDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V with f(v) = ∅ the condition ⋃ u∈N−(v) f(u) = {1, 2} is fulfilled, where N−(v) is the set of in-neighbors of v. The weight of a 2RDF f is the value ω(f) = ∑ v∈V |f(v)|. The 2-rainbow d...
We initiate the study of total outer-independent domination in graphs. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \ D is independent. The total outer-independent domination number of a graph G is the minimum cardinality of a total outer-independent dominating set of G. First we discuss the ...
A total outer-independent dominating set of a graph G = (V (G), E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V (G) \D is independent. The total outer-independent domination number of a graph G, denoted by γ t (G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n ≥ 4, with l le...
A Roman dominating function of a graph G is a function f : V → {0, 1, 2} such that every vertex with 0 has a neighbor with 2. The minimum of f (V (G)) = ∑ v∈V f (v) over all such functions is called the Roman domination number γR(G). A 2-rainbow dominating function of a graphG is a function g that assigns to each vertex a set of colors chosen from the set {1, 2}, for each vertex v ∈ V (G) such ...
We first consider some problems related to the maximum number of dominating (or strong dominating) sets in a regular graph. Our techniques, centered around Shearer’s entropy lemma, extend to a reasonably broad class of graph parameters enumerating vertex colorings that satisfy conditions on the multiset of colors appearing in neighborhoods (either open or closed). Dominating sets and strong dom...
A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value ω(f) = ∑ v∈V |f(v)|. The 2-rainbow domination number of a graph G, denoted by γr2...
A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...
Let D = (V,A) be a finite and simple digraph. A k-rainbow dominating function (kRDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the set of in-neighbors of v. The weight of a kRDF f is the value ω(f) = ∑ v∈V |f(v...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید