نتایج جستجو برای: odd mean labeling

تعداد نتایج: 664567  

N. Angel Benseera P. Jeyanthi,

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

Journal: :Resonance 2021

We propose a new puzzle: Label the eight vertices of cube using distinct integers between 0 and 12 (both inclusive) such that induced labeling each edge, given by sum labels its end points, causes edges to be labeled with odd numbers 1, 3, … 23. Any solution puzzle is called super odd-sum labeling. deftly discover all cube.

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

Journal: :journal of algorithms and computation 0
p. jeyanthi 2research center, department of mathematics, aditanar college for women, tiruchendur - 628 216, india n. angel benseera department of mathematics, sri enakshi government arts college for women (autonomous), madurai - 625 002, india.

a graph g is said to have a totally magic cordial labeling with constant c if there exists a mapping f : v (g) ∪ e(g) → {0, 1} such that f(a) + f(b) + f(ab) ≡ c (mod 2) for all ab ∈ e(g) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. in this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

2015
Ayesha Riasat Sana Javed

Let G = (V, E) be a finite, simple and undirected graph. A graph G with q edges is said to be odd-graceful if there is an injection f : V (G) → {0, 1, 2, . . . , 2q− 1} such that, when each edge xy is assigned the label |f (x)− f (y)| , the resulting edge labels are {1, 3, 5, . . . , 2q− 1} and f is called an odd graceful labeling of G. Motivated by the work of Z. Gao [6] in which he studied th...

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

2014
S. AROCKIARAJ P. MAHALAKSHMI

An injective function f : V (G)→ {0, 1, 2, . . . , q} is an odd sum labeling if the induced edge labeling f∗ defined by f∗(uv) = f(u) + f(v), for all uv ∈ E(G), is bijective and f∗(E(G)) = {1, 3, 5, . . . , 2q − 1}. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property of the subdivision of the triangular snake, quadrilatera...

Journal: :Modern Applied Science 2010

Journal: :Journal of Physics: Conference Series 2021

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید