نتایج جستجو برای: nsga іі
تعداد نتایج: 2358 فیلتر نتایج به سال:
Modern this paper proposes non dominated sorting genetic algorithm (NSGA-II) which has feature of adaptive crowding distance for finding optimal location and sizing of Static Var Compensators (SVC) in order to minimize real power losses and voltage deviation and also to improve voltage profile of a power system at the same time. While finding the optimal location and size of SVC, single line ou...
This paper presents an application of elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), to efficiently schedule a set of independent tasks in a heterogeneous distributed computing system. This scheduling problem is a bi-objective problem considering two objectives. The first objective is minimization of makespan and the second one being the minimization of flowtime. As a multi-objectiv...
Evolutionary algorithms (EAs) have been systematically developed to solve mono-objective, multi-objective and many-objective optimization problems, in this order, over the past few decades. Despite some efforts in unifying different types of mono-objective evolutionary and non-evolutionary algorithms, there does not exist many studies to unify all three types of optimization problems together. ...
Abstract. This paper examines the effect of crossover operations on the performance of EMO algorithms through computational experiments on knapsack problems and flowshop scheduling problems using the NSGA-II algorithm. We focus on the relation between the performance of the NSGA-II algorithm and the similarity of recombined parent solutions. First we show the necessity of crossover operations t...
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to ac...
In this paper, we apply an elitist multi-objective genetic algorithm for solving mechanical component design problems with multiple objectives. Although there exists a number of classical techniques, evolutionary algorithms (EAs) have an edge over the classical methods in that they can find multiple Pareto-optimal solutions in one single simulation run. The proposed algorithm (we call NSGA-II) ...
The Evolutionary Computation has grown much in last few years. Inspired by biological evolution, this field is used to solve NP-hard optimization problems to come up with best solution. TSP is most popular and complex problem used to evaluate different algorithms. In this paper, we have conducted a comparative analysis between NSGA-II, NSGA-III, SPEA-2, MOEA/D and VEGA to find out which algorit...
Many control problems involve simultaneous optimization of multiple performance measures that are often noncommensurable and competing with each other. Traditionally, classical optimization algorithms based on nonlinear programming or optimal control theory is applied to obtain the solution of such problems using different scalar approaches. The presence of multiple objectives in a problem usua...
Based on the analysis on the basic principles and characteristics of the existing multiobjective genetic algorithm (MOGA), an improved multi-objective GA with elites maintain is put forward based on non-dominated sorting genetic algorithm (NSGA). NSGA-II algorithm theory and parallel hybrid evolutionary theory is described in detail. The design principle, process and detailed implementations of...
We present a multi-objective evolutionary algorithm to exploit a medium-sized fuzzy outranking relation to derive a partial order of classes of alternatives (we call it RP-NSGA-II). To measure the performance of RP-NSGA-II, we present an empirical study over a set of simulated multi-criteria ranking problems. The result of this study shows that RP-NSGA-II can effectively exploit a medium-sized ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید