نتایج جستجو برای: n seminorm
تعداد نتایج: 976668 فیلتر نتایج به سال:
LetM be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n×n real skew-symmetric matrices θ. TheMθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show th...
We study the problem of predicting the labelling of a graph. The graph is given and a trial sequence of (vertex,label) pairs is then incrementally revealed to the learner. On each trial a vertex is queried and the learner predicts a boolean label. The true label is then returned. The learner’s goal is to minimise mistaken predictions. We propose minimum p-seminorm interpolation to solve this pr...
We show how to obtain continuity in the BV(D.)-seminorm of the L -projection of us BV(íí) into a large class of finite element spaces.
We use the theory of quantization to introduce non-commutative versions of metric on state space and Lipschitz seminorm. We show that a lower semicontinuous matrix Lipschitz seminorm is determined by their matrix metrics on the matrix state spaces. A matrix metric comes from a lower semicontinuous matrix Lip-norm if and only if it is convex, midpoint balanced, and midpoint concave. The operator...
Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using...
Measure homology is a variation of singular homology designed by Thurston in his discussion of simplicial volume. Zastrow and Hansen showed independently that singular homology (with real coefficients) and measure homology coincide algebraically on the category of CW-complexes. It is the aim of this paper to prove that this isomorphism is isometric with respect to the `1-seminorm on singular ho...
1.1. Introducton to Banach Spaces Definition 1.1. Let X be a K–vector space. A functional p ∶ X → [0,+∞) is called a seminorm, if (a) p(λx) = ∣λ∣p(x), ∀λ ∈ K, x ∈X, (b) p(x + y) ≤ p(x) + p(y), ∀x, y ∈X. Definition 1.2. Let p be a seminorm such that p(x) = 0 ⇒ x = 0. Then, p is a norm (denoted by ∥ ⋅ ∥). Definition 1.3. A pair (X, ∥ ⋅ ∥) is called a normed linear space. Lemma 1.4. Each normed sp...
Let M be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n × n skew-symmetric matrices θ. The Mθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show tha...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید