نتایج جستجو برای: n clean ring

تعداد نتایج: 1102529  

Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\fra...

2008
LINGLING FAN XIANDE YANG

A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...

Journal: :bulletin of the iranian mathematical society 2015
h. chen h. kose y. ‎kurtulmaz

‎a ring $r$ is strongly clean provided that every element‎ ‎in $r$ is the sum of an idempotent and a unit that commutate‎. ‎let‎ ‎$t_n(r,sigma)$ be the skew triangular matrix ring over a local‎ ‎ring $r$ where $sigma$ is an endomorphism of $r$‎. ‎we show that‎ ‎$t_2(r,sigma)$ is strongly clean if and only if for any $ain‎ ‎1+j(r)‎, ‎bin j(r)$‎, ‎$l_a-r_{sigma(b)}‎: ‎rto r$ is surjective‎. ‎furt...

Journal: :bulletin of the iranian mathematical society 0
z. ‎zhu department of mathematics,jiaxing university,jiaxing,zhejiang province,china,314001

let $r$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎a right $r$-module $m$ is called $(n‎, ‎d)$-projective if $ext^{d+1}_r(m‎, ‎a)=0$ for every $n$-copresented right $r$-module $a$‎. ‎$r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $r$-module is $(n‎, ‎d)$-projective‎. ‎$r$ ...

2013
Junchao Wei

The main results: A ring R is CN if and only if for any x ∈ N(R) and y ∈ R, ((1+x)y)n+k = (1+x)n+kyn+k, where n is a fixed positive integer and k = 0, 1, 2; (2) Let R be a CN ring and n ≥ 1. If for any x, y ∈ R\N(R), (xy)n+k = xn+kyn+k, where k = 0, 1, 2, then R is commutative; (3) Let R be a ring and n ≥ 1. If for any x ∈ R\N(R) and y ∈ R, (xy)k = xkyk, k = n, n + 1, n + 2, then R is commutati...

2009
Dinesh Khurana Chanchal Kumar

Let R be an Abelian exchange ring. We prove the following results: 1. RZ2 and RS3 are clean rings. 2. If G is a group of prime order p and p is in the Jacobson radical of R, then RG is clean. 3. If identity in R is a sum of two units and G is a locally finite group, then every element in RG is a sum of two units. 4. For any locally finite group G, RG has stable range one. All rings in this note...

2002
HUANYIN CHEN MIAOSEN CHEN M. CHEN

We introduce the notion of clean ideal, which is a natural generalization of clean rings. It is shown that every matrix ideal over a clean ideal of a ring is clean. Also we prove that every ideal having stable range one of a regular ring is clean. These generalize the corresponding results for clean rings. 1. Introduction. Let R be a unital ring. We say that R is a clean ring in case every elem...

An element $a$ in a ring $R$ is very clean in case there exists‎ ‎an idempotent $ein R$ such that $ae = ea$ and either $a‎- ‎e$ or $a‎ + ‎e$ is invertible‎. ‎An element $a$ in a ring $R$ is very $J$-clean‎ ‎provided that there exists an idempotent $ein R$ such that $ae =‎ ‎ea$ and either $a-ein J(R)$ or $a‎ + ‎ein J(R)$‎. ‎Let $R$ be a‎ ‎local ring‎, ‎and let $sin C(R)$‎. ‎We prove that $Ain K_...

2004
Warren Wm. McGovern

A commutative ring A is said to be clean if every element of A can be written as a sum of a unit and an idempotent. This definition dates back to 1977 where it was introduced by W. K. Nicholson [7]. In 2002, V. P. Camillo and D. D. Anderson [1] investigated commutative clean rings and obtained several important results. In [4] Han and Nicholson show that if A is a semiperfect ring, then A[Z2] i...

Journal: : 2021

We completely determine those natural numbers $n$ for which the full matrix ring $M_n(F_2)$ and triangular $T_n(F_2)$ over two elements field $F_2$ are either n-torsion clean or almost clean, respectively. These results somewhat address settle a question, recently posed by Danchev-Matczuk in Contemp. Math. (2019) as well they supply more precise aspect nil-cleanness property of $n\times n$ all ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید