نتایج جستجو برای: n 1 n prime submodule
تعداد نتایج: 3372901 فیلتر نتایج به سال:
Let R be a commutative ring with identity and M be a unital R-module. Then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that N = IM. Our objective is to investigate properties of prime and semiprime submodules of multiplication modules. Mathematics Subject Classification: 13C05, 13C13
a module $m$ is called $emph{h}$-cofinitely supplemented if for every cofinite submodule $e$ (i.e. $m/e$ is finitely generated) of $m$ there exists a direct summand $d$ of $m$ such that $m = e + x$ holds if and only if $m = d + x$, for every submodule $x$ of $m$. in this paper we study factors, direct summands and direct sums of $emph{h}$-cofinitely supplemented modules. let $m$ be an $emph{h}$...
A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}...
Let $G$ be a group with identity $e$. $R$ commutative $G$-graded ring non-zero identity, $S\subseteq h(R)$ multiplicatively closed subset of and $M$ graded $R$-module. In this article, we introduce study the concept $S$-1-absorbing prime submodules. A submodule $N$ $(N:_{R}M)\cap S=\emptyset$ is said to prime, if there exists an $s_{g}\in S$ such that whenever $a_{h}b_{h'}m_{k}\in N$, then eith...
Let $R$ be a commutative ring with identity. A proper submodule $N$ of an $R$-module $M$ is an n-submodule if $rmin N~(rin R, min M)$ with $rnotinsqrt{Ann_R(M)}$, then $min N$. A number of results concerning n-submodules are given. For example, we give other characterizations of n-submodules. Also various properties of n-submodules are considered.
let $r$ be an arbitrary ring and $t$ be a submodule of an $r$-module $m$. a submodule $n$ of $m$ is called $t$-small in $m$ provided for each submodule $x$ of $m$, $tsubseteq x+n$ implies that $tsubseteq x$. we study this mentioned notion which is a generalization of the small submodules and we obtain some related results.
By considering the notion of multiplication modules over a commutative ring with identity, first we introduce the notion product of two submodules of such modules. Then we use this notion to characterize the prime submodules of a multiplication module. Finally, we state and prove a version of Nakayama lemma for multiplication modules and find some related basic results. 1. Introduction. Let R b...
Let R be a commutative ring with nonzero identity and M an R-module. In this paper, first we give some relations between S-prime S-maximal submodules that are generalizations of prime maximal submodules, respectively. Then construct topology on the set all , which is generalization spectrum M. We investigate when SpecS(M) T0 T1-space. also study continuous maps irreducibility SpecS(M). Moreover...
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $P$ of $M$ is called strongly prime submodule if $(P + Rx : M)ysubseteq P$ for $x, yin M$, implies that $xin P$ or $yin P$. In this paper, we study more properties of strongly prime submodules. It is shown that a finitely generated $R$-module $M$ is Artinian if and only if $M$ is Noetherian and every st...
the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید