نتایج جستجو برای: multiplicative zagreb coindex
تعداد نتایج: 16115 فیلتر نتایج به سال:
for a graph $g$ with edge set $e(g)$, the multiplicative sum zagreb index of $g$ is defined as$pi^*(g)=pi_{uvin e(g)}[d_g(u)+d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$.in this paper, we first introduce some graph transformations that decreasethis index. in application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum zagreb ...
for a graph $g$ with edge set $e(g)$, the multiplicative second zagreb index of $g$ is defined as $pi_2(g)=pi_{uvin e(g)}[d_g(u)d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$. in this paper, we identify the eighth class of trees, with the first through eighth smallest multiplicative second zagreb indeces among all trees of order $ngeq 14$.
The multiplicative sum Zagreb index is defined for a simple graph G as the product of the terms dG(u)+dG(v) over all edges uv∈E(G) , where dG(u) denotes the degree of the vertex u of G . In this paper, we present some lower bounds for the multiplicative sum Zagreb index of several graph operations such as union, join, corona product, composition, direct product, Cartesian product and strong pro...
In theoretical chemistry, the researchers use graph models to express the structure of molecular, and the Zagreb indices and multiplicative Zagreb indices defined on molecular graph G are applied to measure the chemical characteristics of compounds and drugs. In this paper, we present the exact expressions of multiplicative Zagreb indices for certain important chemical structures like nanotube,...
the first ($pi_1$) and the second $(pi_2$) multiplicative zagreb indices of a connected graph $g$, with vertex set $v(g)$ and edge set $e(g)$, are defined as $pi_1(g) = prod_{u in v(g)} {d_u}^2$ and $pi_2(g) = prod_{uv in e(g)} {d_u}d_{v}$, respectively, where ${d_u}$ denotes the degree of the vertex $u$. in this paper we present a simple approach to order these indices for connected graphs on ...
Let $G=(V,E)$, $V={v_1,v_2,ldots,v_n}$, be a simple graph with$n$ vertices, $m$ edges and a sequence of vertex degrees$Delta=d_1ge d_2ge cdots ge d_n=delta$, $d_i=d(v_i)$. Ifvertices $v_i$ and $v_j$ are adjacent in $G$, it is denoted as $isim j$, otherwise, we write $insim j$. The first Zagreb index isvertex-degree-based graph invariant defined as$M_1(G)=sum_{i=1}^nd_i^2$, whereas the first Zag...
For a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M1(G) = ∑ v∈V (G) dG(v) 2 where dG(v) is the degree of vertex v in G. The alternative expression for M1(G) is ∑ uv∈E(G)(dG(u)+dG(v)). Very recently, Eliasi, Iranmanesh and Gutman [7] introduced a new graphical invariant ∏∗ 1(G) = ∏ uv∈E(G)(dG(u) + dG(v)) as the multiplicative version of ...
Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید