نتایج جستجو برای: monoidal category

تعداد نتایج: 81558  

2012
MICAH BLAKE MCCURDY

Tannaka duality describes the relationship between algebraic objects in a given category and functors into that category; an important case is that of Hopf algebras and their categories of representations; these have strong monoidal forgetful “fibre functors” to the category of vector spaces. We simultaneously generalize the theory of Tannaka duality in two ways: first, we replace Hopf algebras...

2008
Vincent Schmitt

We introduce a tensor product for symmetric monoidal categories with the following properties. Let SMC denote the 2-category with objects small symmetric monoidal categories, arrows symmetric monoidal functors and 2-cells monoidal natural transformations. Our tensor product together with a suitable unit is part of a structure on SMC that is a 2-categorical version of the symmetric monoidal clos...

2008
A. A. Davydov

This article is devoted to the investigation of the deformation (twisting) of monoidal structures, such as the associativity constraint of the monoidal category and the monoidal structure of monoidal functor. The sets of twistings have a (non-abelian) c ohomological nature. Using this fact the maps from the sets of twistings to some cohomology groups (Hochschild cohomology of K-theory) are cons...

2008
WALTER FERRER SANTOS IGNACIO LOPEZ FRANCO

We study the basic monoidal properties of the category of Hopf modules for a coquasi Hopf algebra. In particular we discuss the so called fundamental theorem that establishes a monoidal equivalence between the category of comodules and the category of Hopf modules. We present a categorical proof of Radford’s S formula for the case of a finite dimensional coquasi Hopf algebra, by establishing a ...

2012
BACHUKI MESABLISHVILI

We consider a symmetric monoidal closed category V = (V ,⊗, I, [−,−]) together with a regular injective object Q such that the functor [−, Q] : V → V op is comonadic and prove that in such a category, as in the monoidal category of abelian groups, a morphism of commutative monoids is an effective descent morphism for modules if and only if it is a pure monomorphism. Examples of this kind of mon...

2016
Ross STREET

Motivated by the weighted Hurwitz product on sequences in an algebra, we produce a family of monoidal structures on the category of Joyal species. We suggest a family of tensor products for charades. We begin by seeing weighted derivational algebras and weighted Rota–Baxter algebras as special monoids and special semigroups, respectively, for the same monoidal structure on the category of graph...

2008
Mark Weber MARK WEBER

We decribe the correspondence between normalised ω-operads in the sense of [1] and certain lax monoidal structures on the category of globular sets. As with ordinary monoidal categories, one has a notion of category enriched in a lax monoidal category. Within the aforementioned correspondence, we provide also an equivalence between the algebras of a given normalised ωoperad, and categories enri...

2005
ROSS STREET

From the outset, the theories of ordinary categories and of additive categories were developed in parallel. Indeed additive category theory was dominant in the early days. By additivity for a category I mean that each set of morphisms between two objects (each “hom”) is equipped with the structure of abelian group and composition on either side, with any morphism, distributes over addition: tha...

2001
GERALD DUNN

We establish a general coherence theorem for lax operad actions on an n-category which implies that an n-category with such an action is lax equivalent to one with a strict action. This includes familiar coherence results (e.g. for symmetric monoidal categories) and many new ones. In particular, any braided monoidal n-category is lax equivalent to a strict braided monoidal n-category. We also o...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید