نتایج جستجو برای: mixed functional equation
تعداد نتایج: 1010417 فیلتر نتایج به سال:
Introduction A classical question in the theory of functional equations is “when is it true that a mapping, which approximately satisfies a functional equation, must be somehow close to an exact solution of the equation?”. Such a problem, called a stability problem of the functional equation, was formulated by Ulam [1] in 1940. In the next year, Hyers [2] gave a partial solution of Ulam’s probl...
It has been shown that a normal S-iterative method converges to the solution of a mixed type Volterra-Fredholm functional nonlinear integral equation. Furthermore, a data dependence result for the solution of this integral equation has been proven.
in this paper, we investigate the generalizedhyers-ulam-rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{z}-{0,pm1}$) in $p-$banach spaces.
The purpose of this paper is to solve the seventh-order functional equation as follows: --------------------------- Next, we study the stability of this type of functional equation. Clearly, the function ---------- holds in this type functional equation. Also, we prove Hyers-Ulam stability for this type functional equation in the β-Gaussian Banach space.
in the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{e}$$ isgiven where $sigma$ is an involution of the normed space $e$ and$k$ is a fixed positive integer. furthermore we investigate thehyers-ulam-rassias stability of the functional equation. thehyers-ulam stability on unbounded domains is also studied.applic...
چکیده ندارد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید