نتایج جستجو برای: minimum edge geodetic set
تعداد نتایج: 897967 فیلتر نتایج به سال:
For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W -tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steine...
Given a graph G and a subset W ⊆ V (G), a Steiner W -tree is a tree of minimum order that contains all of W . Let S(W ) denote the set of all vertices in G that lie on some Steiner W -tree; we call S(W ) the Steiner interval of W . If S(W ) = V (G), then we call W a Steiner set of G. The minimum order of a Steiner set of G is called the Steiner number of G. Given two vertices u, v in G, a short...
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G. We prove that it is NP complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore...
A subset S of vertices in a graph G is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A subset D of vertices in G is called dominating set if every vertex not in D has at least one neighbor in D. A geodetic dominating set S is both a geodetic and a dominating set. The geodetic (domination, geodetic domination) number g(G)(γ(G), γg(G)) of G is...
A set of vertices S in a graph is called geodetic if every vertex of this graph lies on some shortest path between two vertices from S. In this paper, minimum geodetic sets in median graphs are studied with respect to the operation of peripheral expansion. Along the way geodetic sets of median prisms are considered and median graphs that possess a geodetic set of size two are characterized. © 2...
For two vertices u and v of a connected graph G, the set IG[u, v] consists of all those vertices lying on u − v geodesics in G. Given a set S of vertices of G, the union of all sets IG[u, v] for u, v ∈ S is denoted by IG[S]. A set S ⊆ V (G) is a geodetic set if IG[S] = V (G) and the minimum cardinality of a geodetic set is its geodetic number g(G) of G. Bounds for the geodetic number of strong ...
Foucaud, Krishna and Ramasubramony Sulochana recently introduced the concept of monitoring edge-geodetic sets in graphs, a related graph invariant. These are vertices such that removal any edge changes distance between some pair set. They studied minimum possible size set given graph, which we call number. We show decision problem for number is NP-complete. also give best-possible upper lower b...
Let G be a connected graph of order n and S ⊆ V (G). A closed geodetic cover Gis path-induced dominating set if subgraph <S> has Hamiltonianpath is G. The minimum cardinality geodeticdominating called domination number This study presentsthe characterization the sets some common graphsand edge corona two graphs. numbers thesegraphs are also determined.
For a connected graph G of order n, a set S of vertices is called a double geodetic set of G if for each pair of vertices x, y in G there exist vertices u, v ∈ S such that x, y ∈ I[u, v]. The double geodetic number dg(G) is the minimum cardinality of a double geodetic set. Any double godetic of cardinality dg(G) is called dg-set of G. The double geodetic numbers of certain standard graphs are o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید