نتایج جستجو برای: methanol steam reforming
تعداد نتایج: 55133 فیلتر نتایج به سال:
Single step combustion synthesized Cu (5–15 at.-%)/Ce0.8Zr0.2O2 materials containing highly dispersed copper have been assessed for methanol steam reforming (MSR). The activity patterns suggest Cu (10 at.-%)/Ce0.80Zr0.20O2 as the most active formulation, converting ~51% methanol at 300 °C at a gas hourly space velocity of 40,000 h-1 (W/F = 0.09 s). The in situ XPS experiments carried over the m...
This work describes for the first time the room-temperature synthesis of a high surface area Ni0.7Zn0.3O solid solution by sacrificial template accelerated hydrolysis. The synthesis employs a highly polar ZnO template supported on the surface of a stainless steel wire mesh (SSWM) that allows the material to be produced in a monolithic configuration. The resulting material has a large surface ar...
Alternative energy sources, such as various fuel cell technologies, have attracted intense attention due to their high efficiency and low emissions of pollutants. Methanol, with its high hydrogen/carbon ratio, low sulfur content and the absence of carbon–carbon bonds, has been identified as a highly suitable source for onboard production of hydrogen [1]. Among several reactions for converting m...
A compact reformer to generate hydrogen for portable fuel cell applications is presented. This reformer is a conventional type single-path tubular reactor packed with granular catalyst particles in which steam reforming and catalytic partial oxidation reactions take place in series using a mixture of methanol and water as a feed. The novel feature of this reformer is in the interlacing of the f...
Pd supported on ZnO has recently raised great interest as a catalyst for methanol steam reforming. Different from unsupported Pd, Pd-ZnO shows high selectivity and good conversion towards CO2 and hydrogen [1]. The difference is attributed to the formation of a PdZn alloy under reaction conditions, but there is still limited knowledge on the exact surface structure/composition and reaction mecha...
Hydrogen can be produced for fuel cell applications by using methanol steam reforming reaction. In this article, a method was developed for regeneration of accelerated deactivated methanol-steam-reforming catalyst. Successive deactivation–regeneration cycles were studied in a 250 hours test for the first time including 6 regeneration cycles. It is shown that regeneration of the catalyst in ...
A methanol–steam reformer (MSR) can safely provide hydrogen-rich fuel for a cell system. Since the operating temperature of an MSR is relatively low, convective heat transfer typically used to thermal energy endothermic reactions in MSR. In this study, use phase change was investigated, which enhanced uniformity longitudinally along ANSYS Fluent® software investigate performance reforming react...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید