نتایج جستجو برای: mean squared errors
تعداد نتایج: 724703 فیلتر نتایج به سال:
Beamforming methods are used extensively in a variety of different areas, where one of their main goals is to estimate the source signal amplitude s(t) from the array observations y(t) = s(t)a + i(t) + e(t), t = 1,2,..., where a is the steering vector, i(t) is the interference, and e(t) is a Gaussian noise vector [1, 2]. To estimate s(t), we may use a beamformer with weights w so that s(t) = w*...
The problem of forming images that are optimal with respect to a Mean Square Error (MSE) criterion, based on nite data, is considered. First, it is shown that the MSE criterion is consistent with the general goal of classifying images, in that decreasing the MSE guarantees a decrease in the probability of misclassifying an image. The problem of choosing sampling locations for image formation th...
اندازه گیری رطوبت حجمی خاک و آب قابل دسترس برای گیاهان در رشته های مختلف مانند خاکشناسی، هیدرولوژی و مهندسی آب بسیار مهم است. بنابراین بررسی متعدد رطوبت خاک و میزان قابل استفاده آن برای گیاه از مهم ترین موضوعات در علم رابطه آب، خاک وگیاه است. برای تعیین رطوبت از روش های مختلفی مانند روش مستقیم (روش وزنی) و روش های غیر مستقیم مانند استفاده از دستگاه tdr و شبکه های هوش مصنوعی مانند شبکه عصبی، فاز...
High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular accelerati...
This paper considers the classical and inverse calibration estimators and discusses the consequences of departure from normality of errors on their bias and mean squared error properties when the errors in calibration process are small.
Prediction intervals in State Space models can be obtained by assuming Gaussian innovations and using the prediction equations of the Kalman filter, where the true parameters are substituted by consistent estimates. This approach has two limitations. First, it does not incorporate the uncertainty due to parameter estimation. Second, the Gaussianity assumption of future innovations may be inaccu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید