نتایج جستجو برای: magnetic hyperthermia mri
تعداد نتایج: 417438 فیلتر نتایج به سال:
in this work, mn ferrite nanopowders were prepared by co-precipitation method and were characterized. phase identification of the nanopowders was performed by x-ray diffraction method and the mean particle size of the nanopowders was calculated by scherrer's formula, using necessary corrections. magnetic parameters of the prepared nanopowders were measured by a vibrating sample magnetomete...
Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....
Thermoresponsive polymer-coated magnetic nanoparticles loaded with anti-cancer drugs are of considerable interest for novel multi-modal cancer therapies. Such nanoparticles can be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release. Gamma-Fe(2)O(3) iron oxide magnetic nanoparticles (MNP) with average sizes of 14, 19 and 43 nm were synthesized by high temperat...
Magnetic nanomaterials are making significant impact on improving the quality of human health that is tangible from a wide range of applications in various fields of medicine and biology. In recent years, nanoparticles successfully demonstrated outstanding applications due to having excellent magnetic properties of the iron oxide nanoparticles-based counterparts. Zero-valent iron nanoparticles ...
background: nowadays, magnetic nanoparticles (mnps) have received much attention because of their enormous potentials in many fields such as magnetic fluid hyperthermia (mfh). the goal of hyperthermia is to increase the temperature of malignant cells to destroy them without any lethal effect on normal tissues. to investigate the effectiveness of cancer therapy by magnetic fluid hyperthermia, fe...
SPIONs are composed of Fe3O4 or gamma Fe2O3 cores and a biocompatible shell from Dextran, PLA, PEG, Chitosan, PVA. have many important applications in medicine biology such as cell sorting, drug carrier, magnetic hyperthermia, resonance imaging (MRI). This study aims to check the ability copolymer PLA-PEG coated ferromagnetic nanosystems (Fe3O4@PLA-PEG) produced for MRI application. The results...
Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagne...
Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagne...
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
Recently, a number of studies have been devoted for the exploitation magnetic nanoparticles with potential applications in medicine and environment. Among oxide nanoparticles, iron has emerged as essential tool nanotechnology particularly, biotechnology. This is attributed to its exceptional properties such size, shape, supermagnetism biocompatibility. The nanoparticle less toxic more biocompat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید