نتایج جستجو برای: m convex function
تعداد نتایج: 1717049 فیلتر نتایج به سال:
let $x$ be a real normed space, then $c(subseteq x)$ is functionally convex (briefly, $f$-convex), if $t(c)subseteq bbb r $ is convex for all bounded linear transformations $tin b(x,r)$; and $k(subseteq x)$ is functionally closed (briefly, $f$-closed), if $t(k)subseteq bbb r $ is closed for all bounded linear transformations $tin b(x,r)$. we improve the krein-milman theorem ...
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
In this paper, we reveal a relation between joint winner property (JWP) in the field of valued constraint satisfaction problems (VCSPs) and M-convexity in the field of discrete convex analysis (DCA). We introduce the M-convex completion problem, and show that a function f satisfying the JWP is Z-free if and only if a certain function f associated with f is M-convex completable. This means that ...
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
This paper presents a faster algorithm for the M-convex submodular flow problem, which is a generalization of the minimum-cost flow problem with an M-convex cost function for the flow-boundary, where an M-convex function is a nonlinear nonseparable discrete convex function on integer points. The algorithm extends the capacity scaling approach for the submodular flow problem by Fleischer, Iwata ...
Induction (or transformation) by bipartite graphs is one of the most important operations on matroids, and it is well known that the induction of a matroid by a bipartite graph is again a matroid. As an abstract form of this fact, the induction of a matroid by a linking system is known to be a matroid. M-convex functions are quantitative extensions of matroidal structures, and they are known as...
The rational cubic function with three parameters has been extended to rational bi-cubic function to visualize the shape of regular convex surface data. The rational bi-cubic function involves six parameters in each rectangular patch. Data dependent constraints are derived on four of these parameters to visualize the shape of convex surface data while other two are free to refine the shape of s...
Recently K. Murota has introduced concepts of L-convex function and Mconvex function as generalizations of those of submodular function and base polyhedron, respectively, and has shown separation theorems for L-convex/concave functions and for M-convex/concave functions. The present note gives short alternative proofs of the separation theorems by relating them to the ordinary separation theore...
In this paper, we introduce the notion of $M$-fuzzifying interval spaces, and discuss the relationship between $M$-fuzzifying interval spaces and $M$-fuzzifying convex structures.It is proved that the category {bf MYCSA2} can be embedded in the category {bf MYIS} as a reflective subcategory, where {bf MYCSA2} and {bf MYIS} denote the category of $M$-fuzzifying convex structures of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید