نتایج جستجو برای: localized necking
تعداد نتایج: 103908 فیلتر نتایج به سال:
In this paper, a new approach is proposed for stress state - dependent flow localization in bifurcation failure model bounded through ductile damage in dynamically loaded sheets. Onset of localized necking is considered in phenomenological way for different strain rates to draw the forming limit diagram (FLD). Using a strain metal hardening exponent in the Vertex theory related to the strain ra...
The forming limit diagram (FLD) is probably the most common representation of sheet metal formability and can be defined as the locus of the principal planar strains where failure is most likely to occur. Low carbon steel sheets have many applications in industries, especially in automotive parts, therefore it is necessary to study the formability of these steel sheets. In this paper, FLDs, wer...
We report molecular dynamics simulations of the recently discovered superelongation of carbon nanotubes (CNTs) at high temperatures. The nearly simultaneous activation and wide distribution of a large number of defects near the elastic limit play a key role in impeding the formation of localized predominant instability and facilitating large tensile elongation. It suggests new and more complex ...
The forming limit is an important failure criterion for polycrystalline sheet metals when approving the process. Recent developments in strain measurement technology, e.g., digital image correlation (DIC), enable evolution to be captured continuously and accurately. This new technology would improve measurements if onset of necking detection method was developed accordingly. paper proposes a ba...
We employ a simple model to describe the phase behavior of 4He and Ar in a hypothetical porous material consisting of a regular array of infinitely long, solid, parallel cylinders. We find that high porosity geometries exhibit two transitions: from vapor to film and from film to capillary condensed liquid. At low porosity, the film is replaced by a "necking" configuration, and for a range of in...
Neck retardation in stretching of ductile materials is promoted by strain hardening, strain-rate hardening and inertia. Retardation is usually beneficial because necking is often the precursor to ductile failure. The interaction of material behavior and inertia in necking retardation is complicated, in part, because necking is highly nonlinear but also because the mathematical character of the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید