نتایج جستجو برای: local fractional derivative operators
تعداد نتایج: 734744 فیلتر نتایج به سال:
The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...
approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. in this paper with central difference approximation and newton cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. three...
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
We start with a general governing equation for diffusion transport, written in conserved form, which the phenomenological flux laws can be constructed number of alternative ways. pay particular attention to that account non-locality through space fractional derivative operators. The available results on well posedness equations using such are discussed. A discrete control volume numerical solut...
A class of fractional derivative operators (with the Appell hypergeometric function in the kernel) is used here to define a new subclass of analytic functions and a coefficient bound inequality is established for this class of functions. Also, an inclusion theorem for a class of fractional integral operators involving the Hardy space of analytic functions is proved. The concluding remarks brief...
in this article, we survey the asymptotic stability analysis of fractional differential systems with the prabhakar fractional derivatives. we present the stability regions for these types of fractional differential systems. a brief comparison with the stability aspects of fractional differential systems in the sense of riemann-liouville fractional derivatives is also given.
Classical and anomalous diffusion equations employ integer derivatives, fractional derivatives, and other pseudodifferential operators in space. In this paper we show that replacing the integer time derivative by a fractional derivative subordinates the original stochastic solution to an inverse stable subordinator process whose probability distributions are Mittag-Leffler type. This leads to e...
In a fractional Cauchy problem, the usual first order time derivative is replaced by a fractional derivative. This problem was first considered by Nigmatullin (1986), and Zaslavsky (1994) in R for modeling some physical phenomena. The fractional derivative models time delays in a diffusion process. We will give a survey of the recent results on the fractional Cauchy problem and its generalizati...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید