نتایج جستجو برای: liquid exfoliation
تعداد نتایج: 220300 فیلتر نتایج به سال:
Atomically thin quantum dots from layered materials promise new science and applications, but their scalable synthesis and separation have been challenging. We demonstrate a universal approach for the preparation of quantum dots from a series of materials, such as graphite, MoS2, WS2, h-BN, TiS2, NbS2, Bi2Se3, MoTe2, Sb2Te3, etc., using a cryo-mediated liquid-phase exfoliation and fracturing pr...
Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of gr...
To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show th...
Hematene and magnetene nanoplatelets have been produced by liquid phase exfoliation of natural mineral ores, in a water solution melamine under mild sonication.
Fluorinated single-layer diamond (“F-diamond”) is a new form of two-dimensional (2D) carbon allotrope. Herein, poly(dicarbon monofluoride) (C2F)n which essentially made stacked layers “F-diamane” has been synthesized and exfoliated in variety solvents to yield well-dispersed ultrathin sheets. Microscopic spectroscopic analyses revealed that the nanosheets retained “F-diamane”-like structure. Th...
We report the liquid-phase ultrasonic exfoliation of two layered hydrogen-bonded frameworks into monolayer, micron-sized, and water-stable nanosheets (HONs) connected purely by hydrogen-bonding interactions.
Ultrathin BP QDs with a uniform size of ∼3.4 nm were prepared via small molecule-assisted liquid phase exfoliation and they exhibited superior broadband nonlinear saturable absorption promising for nonlinear optical applications. Laser photolysis measurement implied that the nonlinear response origin was related to the long-lived electron-hole pairs delocalized within the BP QDs.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید