نتایج جستجو برای: laplacian energy like invariant

تعداد نتایج: 1357639  

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

Journal: :iranian journal of mathematical chemistry 2014
f fayazi s rahimi sharbaf

a concept related to the spectrum of a graph is that of energy. the energy e(g) of a graph g is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of g . the laplacian energy of a graph g is equal to the sum of distances of the laplacian eigenvalues of g and the average degree d(g) of g. in this paper we introduce the concept of laplacian energy of fuzzy graphs. ...

Journal: :bulletin of the iranian mathematical society 2014
d. w. yoon j. w. lee

‎in this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional heisenberg group $rm nil_3$‎. ‎in particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm nil_3$‎ ‎whose position vector $x$ satisfies the equation $delta x = ax$‎, ‎where $delta$ is the laplacian operator of the surface and $a$‎ ‎is a $3 times 3$-real matrix‎.

Journal: :Discrete Applied Mathematics 2012
Domingos M. Cardoso Enide Andrade Martins María Robbiano Vilmar Trevisan

In this paper we give a simple characterization of the Laplacian spectra of a family of graphs as the eigenvalues of symmetric tridiagonal matrices. In addition, we apply our result to obtain an upper and lower bounds for the Laplacian-energy-like invariant of these graphs. The class of graphs considered are obtained by copies of modified generalized Bethe trees (obtained by joining the vertice...

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

2007
B. ZHOU I. GUTMAN

A b s t r a c t. Let G denote the complement of the graph G . If I(G) is some invariant of G , then relations (identities, bounds, and similar) pertaining to I(G) + I(G) are said to be of Nordhaus-Gaddum type. A number of lower and upper bounds of Nordhaus-Gaddum type are obtained for the energy and Laplacian energy of graphs. Also some new relations for the Laplacian graph energy are established.

Journal: :Applied Mathematics Letters 2011

2012
Bharati Rajan Albert William Sudeep Stephen Cyriac Grigorious Johann Ambrosius

Eigenvalues of a graph are the eigenvalues of its adjacency matrix. The multiset of eigenvalues is called its spectrum. There are many properties which can be explained using the spectrum like energy, connectedness, vertex connectivity, chromatic number, perfect matching etc. Laplacian spectrum is the multiset of eigenvalues of Laplacian matrix. The Laplacian energy of a graph is the sum of the...

In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید