نتایج جستجو برای: laguerre polynomials

تعداد نتایج: 39597  

2008
MARK DAVIDSON

Analysis of function spaces and special functions are closely related to the representation theory of Lie groups. We explain here the connection between the Laguerre functions, the Laguerre polynomials, and the Meixner-Pollacyck polynomials on the one side, and highest weight representations of Hermitian Lie groups on the other side. The representation theory is used to derive differential equa...

2017
Waseem A. Khan Hiba Haroon

A new class of generalized Laguerre-based poly-Bernoulli polynomials are discussed with an attempt to generate new and interesting identities, some are in relation with Stirling number of the second kind. Different analytical means and generating function method is incorporated to derive implicit summation formulae and symmetry identities for generalized Laguerre poly-Bernoulli polynomials. It ...

Journal: :Int. J. Math. Mathematical Sciences 2005
Brij Mohan Singh Jon G. Rokne Ranjit S. Dhaliwal

where α + β + 1 > β > 1 −m, σ + 1 > α + β > 0, m is a positive integer, and 0 < h < ∞, 0 ≤ b <∞, and h and b are finite constants. L n [(x + b)h] is a Laguerre polynomial, An are unknown coefficients, and f (x) and g(x) are prescribed functions. Srivastava [5, 6] has solved the following dual series equations: ∞ ∑ n=0 AnL (α) n (x) Γ(α+n+ 1) = f (x), 0 < x < a, (1.3) ∞ ∑ n=0 AnL (σ) n (x) Γ(α+n...

2015
JANG SOO KIM DENNIS STANTON

The explicit double sum for the associated Laguerre polynomials is derived combinatorially. The moments are described using certain statistics on permutations and permutation tableaux. Another derivation of the double sum is provided using only the moment generating function.

2004
Josef Obermaier Ryszard Szwarc

The support of the orthogonality measure of so-called little q-Laguerre polynomials {ln(.; a|q)}n=0, 0 < q < 1, 0 < a < q−1, is given by Sq = {1, q, q, . . .} ∪ {0}. Based on a method of MÃlotkowski and Szwarc we deduce a parameter set which admits nonnegative linearization. We additionally use this result to prove that little q-Laguerre polynomials constitute a so-called Faber basis in C(Sq).

Journal: :Int. J. Math. Mathematical Sciences 2006
Pierpaolo Natalini Paolo Emilio Ricci

We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and gener...

2008
Nataniel Greene

—An explicit formula for the Fourier coef cients of the Legendre polynomials can be found in the Bateman Manuscript Project. However, formulas for more general classes of orthogonal polynomials do not appear to have been worked out. Here we derive explicit formulas for the Fourier series of Gegenbauer, Jacobi, Laguerre and Hermite polynomials. The methods described here apply in principle to an...

Journal: :CoRR 2016
Daan Huybrechs Peter Opsomer

Laguerre and Laguerre-type polynomials are orthogonal polynomials on the interval [0,∞) with respect to a weight function of the form w(x) = xαe−Q(x), Q(x) = m ∑ k=0 qkx , α > −1, qm > 0. The classical Laguerre polynomials correspond to Q(x) = x. The computation of higher-order terms of the asymptotic expansions of these polynomials for large degree becomes quite complicated, and a full descrip...

1994
R. Kobayashi M. Miyama

We discuss numerical solution of Altarelli-Parisi equations in a Laguerre-polynomial method and in a brute-force method. In the Laguerre method, we get good accuracy by taking about twenty Laguerre polynomials in the flavor-nonsinglet case. Excellent evolution results are obtained in the singlet case by taking only ten Laguerre polynomials. The accuracy becomes slightly worse in the small and l...

1994
V. V. Dodonov I. M. Dremin P. G. Polynkin V. I. Man ’ ko Lebedev

The cumulants and factorial moments of photon distribution for squeezed and correlated light are calculated in terms of Chebyshev, Legendre and Laguerre polynomials. The phenomenon of strong oscillations of the ratio of the cumulant to factorial moment is found. Running title: Oscillations of cumulants in squeezed states.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید