نتایج جستجو برای: l convex ideals
تعداد نتایج: 681607 فیلتر نتایج به سال:
Inspired by a question of Lovász, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lovász’s theta body of the graph. We prove that theta bodies are, up to closure, a version of Lasserre’s rela...
In this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. We study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. For strongly z-ideals, we analyze prime ideals using the concept of zero sets. Moreover, it is proven that the intersection of all zero sets of a prime ideal of C(L),...
A polynomial ideal I ⊆ R[x] is THk-exact if every linear polynomial that is non-negative over VR(I), the real variety of I , is a sum of squares of polynomials of degree at most k modulo I . Lovász recognized that a graph is perfect if and only if the vanishing ideal of the characteristic vectors of its stable sets is TH1-exact, and asked for a characterization of ideals which are TH1-exact. We...
This paper discusses two common techniques in functional analysis: the topological method and the bornological method. In terms of Pietsch’s operator ideals, we establish the equivalence of the notions of operators, topologies and bornologies. The approaches in the study of locally convex spaces of Grothendieck (via Banach space operators), Randtke (via continuous seminorms) and Hogbe-Nlend (vi...
This paper discusses two common techniques in functional analysis: the topological method and the bornological method. In terms of Pietsch’s operator ideals, we establish the equivalence of the notions of operators, topologies and bornologies. The approaches in the study of locally convex spaces of Grothendieck (via Banach space operators), Randtke (via continuous seminorms) and Hogbe-Nlend (vi...
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...
We construct a canonical free resolution for arbitrary monomial modules and lattice ideals. This includes monomial ideals and defining ideals of toric varieties, and it generalizes our joint results with Irena Peeva for generic ideals [BPS],[PS]. Introduction Given a field k, we consider the Laurent polynomial ring T = k[x 1 , . . . , x ±1 n ] as a module over the polynomial ring S = k[x1, . . ...
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید