نتایج جستجو برای: k tuple total domination number
تعداد نتایج: 2138135 فیلتر نتایج به سال:
Let k be a positive integer and let G = (V,E) be a simple graph. The k-tuple domination number γ×k(G) of G is the minimum cardinality of a k-tuple dominating set S, a set that for every vertex v ∈ V , |NG[v]∩S| ≥ k. Also the total k-domination number γ×k,t(G) of G is the minimum cardinality of a total k -dominating set S, a set that for every vertex v ∈ V , |NG(v)∩S| ≥ k. The k-transversal numb...
We consider four different types of multiple domination and provide new improved upper bounds for the kand k-tuple domination numbers. They generalise two classical bounds for the domination number and are better than a number of known upper bounds for these two multiple domination parameters. Also, we explicitly present and systematize randomized algorithms for finding multiple dominating sets...
In this paper, we provide an upper bound for the k-tuple domination number that generalises known upper bounds for the double and triple domination numbers. We prove that for any graph G, ×k(G) ln( − k + 2)+ ln(∑k−1 m=1(k −m)d̂m + )+ 1 − k + 2 n, where ×k(G) is the k-tuple domination number; is the minimal degree; d̂m is the m-degree of G; = 1 if k = 1 or 2 and =−d if k 3; d is the average degree...
In a graph $G$, vertex dominates itself and its neighbours. A set $D\subseteq V(G)$ is said to be $k$-tuple dominating of $G$ if $D$ every at least $k$ times. The minimum cardinality among all sets the domination number $G$. this paper, we provide new bounds on parameter. Some these generalize other ones that have been given for case $k=2$. addition, improve two well-known lower number.
In combinatorics, a latin square is $$n\times n$$ matrix filled with n different symbols, each occurring exactly once in row and column. Associated to square, we can define simple graph called graph. this article, compute lower upper bounds for the domination number k-tuple total numbers of such graphs. Moreover, describe formula 2-tuple number.
Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the {2}-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The dom...
Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the {2}-total domination number and the total 2-tuple domination number of the factors. Using these relationships some exact total domination numbers are obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The domination number of direc...
In this paper, we provide a new upper bound for the α-domination number. This result generalises the well-known Caro-Roditty bound for the domination number of a graph. The same probabilistic construction is used to generalise another well-known upper bound for the classical domination in graphs. We also prove similar upper bounds for the α-rate domination number, which combines the concepts of...
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید