نتایج جستجو برای: k domatic number
تعداد نتایج: 1486135 فیلتر نتایج به سال:
For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set V (D) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (D) with f(v) = ∅ the condition u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled, where N−(v) is the set of in-neighbors of v. A set {f1, f2, . . . , fd} of k-rainbow dominating functions on D with t...
A dominating set of a graph G =( P’, E) is a subset D of Vsuch that every vertex not in D is adjacent to some vertex in D. The domatic number d(G) of G is the maximum positive integer k such that V can be partitioned into k pairwise disjoint dominating sets. The purpose of this paper is to study the domatic numbers of graphs that are obtained from small graphs by performing graph operations, su...
Using a dominating set as a coordinator in wireless networks has been proposed in many papers as an energy conservation technique. Since the nodes in a dominating set have the extra burden of coordination, energy resources in such nodes will drain out more quickly than in other nodes. To maximize the lifetime of nodes in the network, it has been proposed that the role of coordinators be rotated...
For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set {f1, f2, ....
Let k ≥ j ≥ 1 be two integers, and letG be a simple graph such that j(δ(G)+1) ≥ k, where δ(G) is the minimum degree of G. A (j, k)-dominating function of a graph G is a function f from the vertex set V (G) to the set {0, 1, 2, . . . , j} such that for any vertex v ∈ V (G), the condition ∑ u∈N[v] f(u) ≥ k is fulfilled, where N [v] is the closed neighborhood of v. A set {f1, f2, . . . , fd} of (j...
Let D be a simple digraph with vertex set V (D), and let f : V (D) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N−[v] f(x) ≥ k for each v ∈ V (D), where N[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set {f1, f2, . . . , fd} of distinct signed k-dominating functions on D with the property that ∑d i=1 fi(x...
Let G be a finite and simple graph with vertex set V (G), and let f: V (G)→ {−1, 1} be a two-valued function. If k > 1 is an integer and ∑ x∈N[v] f(x) > k for each v ∈ V (G), where N [v] is the closed neighborhood of v, then f is a signed k-dominating function on G. A set {f1, f2, . . . , fd} of signed kdominating functions on G with the property that ∑ d i=1 fi(x) 6 k for each x ∈ V (G), is ca...
A partition of V (G), all of whose classes are dominating sets in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is called the domatic number of G. The concept of a domatic number was introduced in [1]. More interesting results on domatically full graphs, domatically critical, domatically cocritical graphs and other domatic numbers can be found ...
Let D be a finite and simple digraph with vertex set V (D), and let f : V (D) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N−[v] f(x) ≥ k for each v ∈ V (D), where N−[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set {f1, f2, . . . , fd} of distinct signed k-dominating functions of D with the property tha...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید