نتایج جستجو برای: jordan derivation
تعداد نتایج: 45656 فیلتر نتایج به سال:
Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...
let h be an infinite--dimensional hilbert space and k(h) be the set of all compact operators on h. we will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher jordan derivation on k(h) associated with the following cauchy-jencen type functional equation 2f(frac{t+s}{2}+r)=f(t)+f(s)+2f(r) for all t,s,rin k(h).
Let R be a ring and U be a Lie ideal of R. Suppose that σ, τ are endomorphisms of R. A family D = {d n } n ∈ N of additive mappings d n :R → R is said to be a (σ,τ)- higher derivation of U into R if d 0 = I R , the identity map on R and [Formula: see text] holds for all a, b ∈ U and for each n ∈ N. A family F = {f n } n ∈ N of additive mappings f n :R → R is said to be a generalized (σ,τ)- high...
Derivations, Jordan derivations, as well as automorphisms and Jordan automorphisms of the algebra of triangular matrices and some class of their subalgebras have been the object of active research for a long time [1, 2, 5, 6, 9, 10]. A well-know result of Herstein [11] states that every Jordan isomorphism on a prime ring of characteristic different from 2 is either an isomorphism or an anti-iso...
1. Introduction. One may construct a Jordan homomorphism from one (associative) ring into another ring by taking the sum of a homo-morphism and an antihomomorphism of the first ring into two ideals in the second ring with null intersection [6]. A number of authors have considered conditions on the rings that imply that every Jordan homomorphism, or isomorphism, is of this form [6], [3], [7], [1...
Let A be a unital algebra and M be a unital A-bimodule. A characterization of generalized derivations and generalized Jordan derivations from A into M, through zero products or zero Jordan products, is given. Suppose that M is a unital left A-module. It is investigated when a linear mapping from A into M is a Jordan left derivation under certain conditions. It is also studied whether an algebra...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید