For an $$n\times n$$ complex matrix C, the C-numerical range of a bounded linear operator T acting on Hilbert space dimension at least n is set numbers $$\textrm{tr}\,(CX\,^*\,TX)$$ , where X partial isometry satisfying $$X^*X = I_n$$ . It shown that $$\begin{aligned} \textbf{cl}(W_C(T)) \cap \{\textbf{cl}(W_C(U)): U \hbox { unitary dilation } T\} \end{aligned}$$ for any contraction if and only...