نتایج جستجو برای: inverse sturm
تعداد نتایج: 92493 فیلتر نتایج به سال:
Inverse spectral problems consist in recovering operators from their spectral characteristics. Such problems play an important role in mathematics and have many applications in natural sciences (see, for example, [1 – 6]). In 1988, the inverse nodal problem was posed and solved for Sturm-Liouville problems by J. R. McLaughlin [7], who showed that the knowledge of a dense subset of nodal points ...
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
In this paper, we study the inverse problem for Sturm Liouville with conformable fractional differential operators of order and finite number interior discontinuous conditions. For aim first, asymptotic formulas solutions, eigenvalues eigenfunctions are calculated. Then some uniqueness theorems proposed eigenvalue proved. Finally, Hald's theorem 
 Sturm-Liouville is developed.
In this paper, we give the solution of the inverse Sturm–Liouville problem on two partially coinciding spectra. In particular, in this case we obtain Hochstadt's theorem concerning the structure of the difference q(x) − ˜ q(x) for the singular Sturm Liouville problem defined on the finite interval (0, π) having the singularity type 1 4 sin 2 x at the points 0 and π.
this paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). in this problem q(x), d, a , b are real, qin l^2(0,pi), din(0,pi) and lambda is a parameter independent of x. by ...
Inverse problems of recovering the coefficients of Sturm–Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.
In this study, properties of spectral characteristic are investigated for singular Sturm-Liouville operators in the case where an eigen parameter not only appears in the differential equation but is also linearly contained in the jump conditions. Also Weyl function for considering operator has been defined and the theorems which related to uniqueness of solution of inverse proble...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید