نتایج جستجو برای: interval matrix

تعداد نتایج: 559051  

ژورنال: پژوهش های ریاضی 2017
shams, mehdi,

Based on a given Bayesian model of multivariate normal with  known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e.  conditional and unconditional empirical Bayes confidence interval), the empiri...

It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...

It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...

Journal: :European Journal of Operational Research 2017
Jakub Marecek Peter Richtárik Martin Takác

Matrix completion under interval uncertainty can be cast as a matrix completion problem with element-wise box constraints. We present an efficient alternating-direction parallel coordinate-descent method for the problem. We show that the method outperforms any other known method on a benchmark in image in-painting in terms of signal-to-noise ratio, and that it provides high-quality solutions fo...

2017
Jiri Rohn Raena Farhadsefat JIRI ROHN RAENA FARHADSEFAT

Results on the inverse interval matrix, both theoretical and computational, are surveyed. Described are, among others, formulae for the inverse interval matrix, NP-hardness of its computation, various classes of interval matrices for which the inverse can be given explicitly, and closed-form formulae for an enclosure of the inverse.

Journal: :international journal of data envelopment analysis 0
k. kianfar m. ahadzadeh namin a. alam tabriz e. najafi f. hosseinzadeh lotfi

data envelope analysis (dea) is an approach to estimate the relative efficiency of decision making units (dmus). several studies were conducted in order to prioritize efficient units and some useful models such as cross-efficiency matrix (cem) were presented.  besides, a number of dea models with interval data have been developed and ranking dmus with such data was solved. however, presenting a...

Journal: :Turkish journal of mathematics & computer science 2023

In this paper, we present the notion of complex interval matrix. Further, discuss algebraic structure set all $(m\times n)$ matrices by using tools quasilinear functional analysis. Finally, put a norm on space and calculate matrices.

Journal: :Journal of Mathematics and Computer Science 2014

Journal: :Appl. Math. Lett. 2008
George B. Mertzios

In this work a matrix representation that characterizes the interval and proper interval graphs is presented, which is useful for the efficient formulation and solution of optimization problems, such as the k-cluster problem. For the construction of this matrix representation every such graph is associated with a node versus node zero–one matrix. In contrast to representations used in most of t...

Journal: :Optimization Methods and Software 2012
Deng-Feng Li Jiang-Xia Nan Mao-Jun Zhang

Interval programming models for matrix games with interval payoffs Deng-Feng Li a , Jiang-Xia Nan b & Mao-Jun Zhang c a School of Management, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China b College of Information Engineering, Dalian University, Dalian, 116622, Liaoning, People's Republic of China c Department of Economics, Dalian University of Technology, Dalian, 116024,...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->