نتایج جستجو برای: hyperinvariant subspace
تعداد نتایج: 17796 فیلتر نتایج به سال:
The methods of “minimal vectors” were introduced by Ansari and Enflo and strengthened by Pearcy, in order to prove the existence of hyperinvariant subspaces for certain operators on Hilbert space. In this note we present the method of minimal vectors for operators on super-reflexive Banach spaces and we give a new sufficient condition for the existence of hyperinvariant subspaces of certain ope...
An extended eigenvalue for an operator A is a scalar λ for which the operator equation AX = λXA has a nonzero solution. Several scenarios are investigated where the existence of non-unimodular extended eigenvalues leads to invariant or hyperinvariant subspaces. For a bounded operator A on a complex Hilbert space H, the set EE(A) of extended eigenvalues for A is defined to be the set of those co...
We show that if A is a Hilbert–space operator, then the set of all projections onto hyperinvariant subspaces of A, which is contained in the von Neumann algebra vN(A) that is generated by A, is independent of the representation of vN(A), thought of as an abstract W∗–algebra. We modify a technique of Foias, Ko, Jung and Pearcy to get a method for finding nontrivial hyperinvariant subspaces of ce...
In this paper, it is proved that every non-zero continuous operator with modulus on an lp-space whose modulus is quasinilpotent at a non-zero positive vector has a non-trivial modulus hyperinvariant closed ideal. AMS Subject Classification: 47A15
One of the main methods of examining non-normal operators, acting on Hilbert spaces, is the theory of contractions. This area of operator theory was developed by Béla Sz.-Nagy and Ciprian Foias from the dilation theorem of Sz.-Nagy. Sz.-Nagy and Foias classi ed the contractions according to their asymptotic behaviour. They got strong structural results in the case when the contraction and its a...
Abstract In this paper, we focus on a $2 \times 2$ 2 × operator matrix $T_{\epsilon _{k}}$ T ϵ k as follows: $$\begin{aligned} T_{\epsilon _{k}}= \begin{pmatrix} A & C \\ \epsilon _{k} D B\end{pmatrix}, \end{aligned...
In this paper, we introduce subspace-frequently hypercyclic operators. We show that these operators are subspace-hypercyclic and there are subspace-hypercyclic operators that are not subspace-frequently hypercyclic. There is a criterion like to subspace-hypercyclicity criterion that implies subspace-frequent hypercyclicity and if an operator $T$ satisfies this criterion, then $Toplus T$ is sub...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید